Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т.


НазваниеУчебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т.
страница6/19
ТипУчебно-методический комплекс
filling-form.ru > Туризм > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   19

МАТЕРИАЛЫ ДЛЯ ОРГАНИЗАЦИИ
САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ


по дисциплине

«Математическое моделирование»
Направление - 230700.68, Прикладная информатика


г. Владивосток

2012
ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ КУРСА

Тема 1. Математическое моделирование (2 час.)

Методологическая основа моделирования

Все то, на что направлена человеческая деятельность, называется объектом (лат. objection– предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.

В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверке правильности гипотез большое значение в качестве метода суждения имеет аналогия.

Аналогией называют суждение о каком-либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом. Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам; такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями. Другими словами, модель (лат. modulus – мера) – это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Компьютерная модель это программная реализация математической модели, дополненная различными служебными программами (например, рисующими и изменяющими графические образы во времени). Компьютерная модель имеет две составляющие – программную и аппаратную. Программная составляющая так же является абстрактной знаковой моделью. Это лишь другая форма абстрактной модели, которая, однако, может интерпретироваться не только математиками и программистами, но и техническим устройством – процессором компьютера.

Моделированием называется замещение одного объекта другим с целью получения информации о свойствах объекта-оригинала путем изучения объекта-модели. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях называется теорией моделирования.

Основные понятия теории моделирования систем

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного – путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно) подхода. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.

Понятие системы и элемента системы. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством – стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы.

Система S – целенаправленное множество взаимосвязанных элементов любой природы.

Внешняя среда Е– множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием.

Модель – представление объекта, системы или понятия, в некоторой форме, отличного от их реального существования.

Моделирование – во-первых, построение модели, во-вторых, изучение модели, в-третьих, анализ системы на основе данной модели.

При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Применительно к Вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель М.Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

Цели моделирования:

1) оценка – оценить действительные характеристики проектируемой или существующей системы, определить насколько система предлагаемой структуры будут соответствовать предъявляемым требованиям;

2) сравнение – произвести сравнение конкурирующих систем одного функционального назначения или сопоставить несколько вариантов построения одной и той же системы;

3) прогноз – оценить поведение системы при некотором предполагаемом сочетании рабочих условий;

4) анализ чувствительности – выявить из большого числа факторов, действующих на систему тем, которое в большей степени влияют на ее поведение и определяют ее показатели эффективности;

5) оптимизация – найти или установить такое сочетание действующих факторов и их величин, которое обеспечивает наилучшие показатели эффективности системы в целом. 1-4 задачи анализа, 5 – задача синтеза.

Подходы к исследованию систем. Важным для системного подхода является определение структуры системы – совокупности связей между элементами системы, отражающих их взаимодействие.

При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры – это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

Менее общим является функциональное описание, когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классического (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данныхДставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель М.



Рис. 1.1. Процесс синтеза модели на основе классического (а) и системного (б) подходов

Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникновение нового системного эффекта.

Процесс синтеза модели М на базе системного подхода условно представлен на рис. 1.1, б. На основе исходных данныхД, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза – выбор В составляющих системы, для чего используются специальные критерии выбора КВ.

Стадии разработки моделей. На базе системного подхода может быть предложена и некоторая последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование. На стадии макропроектирования на основе данных о реальной системе S и внешней средеЕстроится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечений систем моделирования. Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного подхода:

1) пропорционально-последовательное продвижение по этапам и направлениям создания модели;

2) согласование информационных, ресурсных, надежных и других характеристик;

3) правильное соотношение отдельных уровней иерархии в системе моделирования;

4) целостность отдельных обособленных стадий построения модели.

Классификация видов моделирования систем

Классификация видов моделирования систем S приведена на рис. 1.2.



Рис. 1.2. Классификация видов моделирования систем

Детерминированное моделирование отображает процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т. е. набор однородных реализаций. Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, в котором каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.

Имитационное моделирование позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.
Тема 2. Математические модели управления проектами(8 час.)

Переходя к разговору об управлении проектами, нужно корректно определить, что понимается под управлением. Для этого приведем ряд распространенных определений:

Управление – «элемент, функция организованных систем различной природы: биологических, социальных, технических, обеспечивающая сохранение их определенной структуры, поддержание режима деятельности, реализацию программы, цели деятельности.

Управление – «направление движением кого/чего-нибудь, руководство действиями кого-нибудь».

Управление – «воздействие на управляемую систему с целью обеспечения требуемого ее поведения». Существует и множество других определений, в соответствии с которыми управление определяется как: элемент, функция, воздействие, процесс, результат, выбор и т.п.

Мы не будем претендовать на то, чтобы дать еще одно определение, а лишь подчеркнем, что, если управление осуществляет субъект, то управление следует рассматривать как деятельность. Такой подход: управление – вид практической деятельности. Этим исключаются из рассмотрения ситуации, в которых управление осуществляет техническая система.Трактовка управления как одной из разновидностей практической деятельности кажется неожиданной. Ведь управление традиционно воспринимается как нечто «высокое» и очень общее, однако деятельность управленца организована так же (по тем же общим законам), как и деятельность любого специалиста-практика: учителя, врача, инженера и т.д. Более того, иногда «управление», многое ставит на свои места – объясняет «многогранность» управления и примиряет между собой различные подходы к определению этого понятия.

Поясним последнее утверждение. Если управление – это деятельность, то осуществление этой деятельности является функцией управляющей системы, процесс управления соответствует процессу деятельности, управляющее воздействие – ее результату и т.д.

Постановка и технология решения задач управления

Обсудим качественно общую постановку задачи управления некото-

рой системой. Пусть имеется управляющий орган (субъект управления) и управляемая система (объект управления). Состояние управляемой системы зависит от внешних воздействий, воздействий со стороны управляющего органа (управления) и, быть может (если объект управления активен, то есть также является субъектом), действий самой управляемой системы. Если подойти чуть более формально, то можно считать, что предпочтения управляющего органа, описываемые критерием эффективности функционирования управляемой системы, зависят от состояния управляемой системы и, быть может, от самих управляющих воздействий. Если известна зависимость состояния управляемой системы от управления (а для поиска и исследования этой зависимости субъект управления может использовать ту или иную модель объекта управления, то получаем зависимость эффективности функционирования управляемой системы от управляющих воздействий.Этот критерий называется критерием эффективности управления. Следовательно, задача управления формально может быть сформулирована следующим образом: найти допустимые управляющие воздействия, имеющие максимальную эффективность (такое управление называется оптимальным управлением). Для этого нужно решить задачу оптимизации – осуществить выбор оптимального управления (оптимальных управляющих воздействий).

Мы привели в самом общем виде формулировку задачи управления. Для того чтобы понять, как эта задача ставится и решается в каждом конкретном случае, рассмотрим общую технологию постановки и решения задачи управления, охватывающую все этапы, начиная с построения модели и заканчивая анализом эффективности внедрения результатов моделирования на практике на котором в целях наглядности опущены обратные связи между этапами).

Первый этап – построение модели – заключается в описании моделируемой системы в формальных терминах. Второй этап – анализ модели (исследование поведения управляемой системы при различных управляющих воздействиях). Решив задачу анализа, можно переходить к третьему этапу – решению, во-первых, прямой задачи управления, то есть задачи синтеза оптимальных управляющих воздействий, заключающейся в поиске допустимых управлений, имеющих максимальную эффективность,и, во-вторых, обратной задачи управления – поиска множества допустимых управляющих воздействий, переводящих управляемую систему в заданное состояние. Следует отметить, что, как правило, именно этот этап решения задачи управления вызывает наибольшие теоретические трудности и наиболее трудоемок сточки зрения исследователя. Имея набор решений задачи управления, необходимо перейти к четвертому этапу, то есть исследовать их устойчивость. Исследование устойчивости подразумевает решение, как минимум, двух задач. Первая задача заключается в изучении зависимости оптимальных решений от параметров модели, то есть является задачей анализа устойчивости решений (см. выше). Вторая задача специфична для математического моделирования. Она заключается в теоретическом исследовании адекватности модели реальной системе, которое подразумевает изучение эффективности решений, оптимальных в модели, при их использовании в реальных системах, которые могут в силу ошибок моделирования отличатьсяот модели. Итак, перечисленные четыре этапа заключаются в общем теоретическом изучении модели. Для того чтобы использовать результаты теоретического исследования при управлении реальной системой, необходимо произвести настройку модели, то есть идентифицировать моделируемую систему и провести серию имитационных экспериментов – соответственно пятый и шестой этапы. Этап имитационного моделирования во многих случаях необходим по нескольким причинам. Во-первых, далеко не всегда удается получить аналитическое решение задачи синтеза оптимального управления и исследовать его зависимость от параметров модели. При этом имитационное моделирование может служить инструментом получения и оценки решений. Во-вторых, имитационное моделирование позволяет проверить справедливость гипотез, принятых при построении и анализе модели, то есть дает дополнительную информацию об адекватности модели без проведения натурного эксперимента. И, наконец, в-третьих, использование деловых игр и имитационных моделей в учебных целях позволяет участникам системы освоить и апробировать предлагаемые механизмы управления. Завершающим является седьмой этап – этап внедрения, на котором производится обучение, внедрение результатов в реальной системе с последующей оценкой эффективности их практического использования, коррекцией модели и т.д.

Проекты и управление проектами

Для удобства анализа проектов и систем управления проектами множество разнообразных проектов может быть классифицировано по различным основаниям. Тип проекта (по основным сферам деятельности, в которых осуществляется проект): технический, организационный, экономический, социальный, образовательный, инвестиционный, инновационный, научно-исследовательский, учебный, смешанный.

Класс проекта. В зависимости от масштаба (в порядке его возрастания) и степени взаимозависимости выделяют следующие виды целенаправленных изменений:

- работы (операции);

- пакеты работ (комплексы технологически взаимосвязанных операций);

- проекты;

- мультипроекты(мультипроект– проект, состоящий из нескольких технологически зависимых проектов, объединенных общими ресурсами);

- программы (программа – комплекс операций (мероприятий, проектов), увязанных технологически, ресурсно и организационно и обеспечивающих достижение поставленной цели;

- портфели проектов (набор не обязательно технологически зависимых проектов, реализуемый организацией в условиях ресурсных ограничений и обеспечивающий достижение ее стратегических целей).

Для описания каждого из перечисленных элементов необходимо учитывать цели, ресурсы, технологию деятельности и механизмы управления. Каждый из этих аспектов является определяющим для соответствующего класса целенаправленных изменений:

- для мультипроекта существенным является наличие технологических ограничений (накладываемых на взаимосвязь входящих в него работ и подпроектов) и ресурсных ограничений;

- для программы существенным (системообразующим) является достижение цели при существующих ресурсных ограничениях;

- для портфеля проектов существенным является использование единых механизмов управления (портфель проектов всегда рассматривается «в привязке» к реализующей его организации),позволяющих наиболее эффективно достигать стратегических целей организации с учетом ресурсных ограничений.

Длительность проекта (по продолжительности периода осуществления проекта): краткосрочные (до 3-х лет), среднесрочные (от 3-х до 5-ти лет), долгосрочные (свыше 5-ти лет).

Сложность проекта (по степени сложности): простые, сложные, очень сложные.

Каждый проект от возникновения идеи до полного своего завершения проходит ряд ступеней своего развития. Полная совокупность ступеней развития образует жизненный цикл проекта. Жизненный цикл принято разделять на фазы, фазы на стадии, стадии на этапы. Здесь нам необходимо еще раз специально оговорить, во избежание дальнейшей возможной путаницы отличие понятий проект и проектирование. Проектирование – это начальная фаза проекта. Действительно, любая продуктивная деятельность, любой проект требуют своего целеполагания – проектирования. В практической деятельности осуществляется проектирование экономических, социальных, технических, экологических и т.д. систем. Проектируется и любое научное исследование, и любое художественное произведение. Перейдем к следующему понятию – «технология». Современное понимание: технология – это система условий, форм, методов и средств решения поставленной задачи. Такое понимание технологии пришло в широкий обиход из сферы производства в последние десятилетия. А именно тогда, когда в развитых странах стали выделяться в отдельные структуры фирмы-разработчики ноу-хау: новых видов продукции, материалов, способов обработки и т.д. Эти фирмы стали продавать фирмам-производителям лицензии на право выпуска своих разработок, сопровождая эти лицензии детальным описанием способов и средств производства – технологиями. Естественно, любой проект реализуется определенной совокупностью технологий. Важнейшую роль в организации продуктивной деятельности играет рефлексия – постоянный анализ целей, задач процесса, результатов. Все виды человеческой деятельности (научная, практическая, учебная и художественная деятельность могут рассматриваться в логике категории проекта на триединстве фаз проекта: проектирования, технологии, рефлексии.

Управление проектами. Под управлением проектами (УП), будем понимать совокупность процессов по планированию, координации и контролю работ для реализации целей проектов с учетом ограничений на ресурсы, бюджет и требований качества. В более широком смысле под управлением проектами понимается применение знаний, практического опыта, инструментальных средств и методов для удовлетворения потребностей заинтересованных лиц проекта. Участники проекта – это физические лица и организации, которые непосредственно вовлечены в проект или чьи интересы могут быть затронуты при осуществлении проекта. Состав участников проекта, их роли, распределение функций и ответственности зависят от типа, вида, масштаба и сложности проекта и от того, на какой стадии/фазе жизненного цикла находится проект в данный момент времени. Как правило, основными (ключевыми) участниками проекта являются:

Заказчик – главная сторона, заинтересованная в осуществлении проекта и достижении его результатов, будущий владелец и пользователь результатов проекта. Заказчик определяет основные требования и масштабы проекта, обеспечивает финансирование проекта за счет своих средств или средств привлекаемых инвесторов, заключает контракты с основными исполнителями проекта, несет ответственность по этим контрактам, управляет процессом

взаимодействия между всеми участниками проекта.

Клиент – индивидуум или организация, которая будет использовать продукты проекта. Это могут быть также группы клиентов. Спонсор – индивидуум или группа, которая обеспечивает финансовые, материальные, человеческие и другие ресурсы для осуществления проекта.

Руководитель (менеджер) проекта – физическое лицо, которому делегируются полномочия по руководству всеми работами по осуществлению проекта: планированию, контролю и координации работ всех участников проекта. Он является персонально ответственным за осуществление проекта.

Команда проекта – специфическая организационная структура, совокупность отдельных лиц, групп и/или организаций, привлеченных к выполнению работ проекта и ответственных перед руководителем проекта за их выполнение. Создается целевым образом на период осуществления проекта. Главная задача команды проекта – выполнение работ по проекту, осуществление функций координации действий и согласование интересов всех участников проекта для достижения целей проекта. Существенными в определении команды являются два аспекта. Первый – достижение цели, то есть, конечный результат совместной деятельности является для команды объединяющим фактором. Второй аспект – автономность и согласованность деятельности – означает, что каждый из членов команды не только демонстрирует поведение, требуемое в данных условиях (позволяющее достичь поставленной цели), но это есть именно то поведение, которого от него ожидают другие члены команды.

Управление проектами (УП), как раздел теории управления, имеет продолжительную историю – начиная с 50-х годов прошлого века (появление метода критического пути – см. выше) и заканчивая современными механизмами и технологиями управления проектами. Программа реализации модели системы на практике – это конкретный план действий по реализации модели в определенных условиях и в установленные (определенные) сроки. Построение программы начинается с операции «определения основных вех». Определение вех составляет начальную, наиболее обобщенную часть программы, которая потом развертывается в укрупненный и, наконец, в детальный план. При определении вех используется информация о ключевых точках, состояниях, через которые будет проходить процесс реализации проекта. Вехи отмечают существенные, определяющие дальнейший ход развития процесса точки перехода. Поэтому вехи позволяют решать проблемы контроля реализации проекта, составляя набор естественных контрольных точек. При анализе выполнения работ вехи становятся эффективным средством управления (самоуправления), помогающим понять, на каком этапе находится процесс реализации проекта, оценить, достигнуты ли основные показатели состояния и сколько осталось времени, средств и конкретных работ до завершения проекта. Вехи не имеют продолжительности. Они используются в качестве дискретной шкалы, которая имеет всего две оценки – «выполнено» или «не выполнено». Так, например, при принятии решений по финансированию очередного этапа выполнения работ по договору вехи используются для оценки завершенности работ. Когда основные вехи определены, приступают к детальному планированию процесса реализации системы. Детальное планирование – это разработка детального графика (графиков в случае сложного проекта) выполнения работ по реализации системы. Детальный график, независимо от размеров проекта и его сложности, должен включать:

– все ключевые события и даты;

– точную последовательность работ.

Логика их выполнения должна быть зафиксирована с помощью сетевого графика, который позволяет проследить все виды зависимостей между работами

и взаимосвязь событий реализации. График служит основой для определения этапов и прочих временных интервалов по реализации системы. Кроме того, он позволяет при необходимости определять потребности в ресурсах для каждой из частей, фрагментов или событий процесса реализации системы. Форма представления графика, естественно, произвольна. Но она должна быть удобна для пользования, в том числе – наглядна и понятна для всех участников реализации системы.

«Методология» управления проектами

Накопление опыта по управлению проектами позволило стандартизировать терминологию и выделить ряд процессов управления проектами, считающихся успешной практикой.

Успешная практика предполагает, что существует общее мнение относительно того, что применение этих процессов управления проектом в соответствующих внешних условиях повышает шансы на успех. Также для этих процессов определена последовательность их выполнения, необходимая входная информация, инструменты, с помощью которых реализуется каждый процесс, методы реализации, а также результаты каждого процесса. Эти процессы относятся к управлению:

- содержанием проекта;

- сроками проекта;

- стоимостью проекта;

- качеством проекта;

- человеческими ресурсами проекта;

- коммуникациями проекта;

- рисками проекта;

- поставками проекта.

Успешная реализация любого проекта требует последовательного решения следующих общих задач:

- определение и анализ целей проекта;

- построение, оценка и выбор альтернативных решений по реализации проекта (вариантов проекта);

- формирование структуры проекта, выбор состава исполнителей, ресурсов, сроков и стоимости работ;

- управление взаимодействием с внешней средой;

- управление исполнителями (персоналом);

- регулирование хода работ (оперативное управление, внесение корректив).

Перечисленные задачи могут быть успешно решены, если решены следующие задачи управления проектами:

- прогнозирование и оценка результатов;

- планирование;

- распределение ресурсов;

- стимулирование исполнителей;

- оперативное управление.

Проект в целом и каждый из исполнителей в отдельности характеризуются следующими показателями:

- объем работ;

- качество работ;

- необходимые финансовые, материальные и др. ресурсы;

- состав участников (кадры);

- риск;

- сроки выполнения.

Каждый проект от зарождения идеи до завершения проходит ряд последовательных фаз, стадий и этапов. С точки зрения управления проектами структура проекта включает:

- структуруработ(WBS – WorksBreakdownStructure). Под структурой декомпозиции работ понимают иерархическую структуру, позволяющую разделить проект на отдельно либо совместно управляемые части – пакеты работ. Каждый нижестоящий уровень структуры представляет собой детализацию элемента более высокого уровня. Каждый пакет работ характеризуется объективным и измеримым результатом, а также ответственным за достижение этого результата. Пакеты работ могут соответствовать подцелям проекта (структура _______декомпозиции целей называется деревом целей). С помощью структуры декомпозиции работ описывается содержание проекта;

- организационную структуру (OBS – OrganizationBreakdownStructure), которая отражает иерархическую взаимную подчиненность участников проекта (руководителя проекта в целом, руководителей подпроектов/работ, исполнителей). Для проектной деятельности характерны матричные организационные структуры, в рамках которых каждый исполнитель одновременно подчинен нескольким руководителям – например, своему функциональному

руководителю и руководителю проекта;

- структуру ресурсов (RBS – ResourcesBreakdownStructure), причем декомпозиция осуществляется как по видам ресурсов (условий осуществления деятельности: мотивационных, кадровых, материально-технических, научно-методических, финансовых, организационных, нормативно-правовых, информационных), так и по «количествам» ресурсов того или иного вида.

- сетевой график, который отражает логику и технологию выполнения работ.

Перечисленные структуры взаимосвязаны, соответствия между WBS и OBS дает распределение ответственноститех или иных элементов оргструктуры за определенные работы (кто отвечает за выполнение каких работ), WBS и RBS – распределение ресурсов (какие ресурсы задействуются при выполнении каких работ), OBS и RBS – распределение полномочий (кто какими ресурсами распоряжается). Ответы на перечисленные Вопросы необходимы для управления любым проектом.

1   2   3   4   5   6   7   8   9   ...   19

Похожие:

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс составлен в соответствии с требованиями федерального государственного образовательного стандарта высшего...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс составлен в соответствии с требованиями федерального государственного образовательного стандарта высшего...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс составлен в соответствии с требованиями федерального государственного образовательного стандарта высшего...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины «Учет на предприятиях малого бизнеса»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины
Туризм, утвержденного приказом Министерства образования и науки РФ от 20. 01. 2006 г. №739гум/бак. Учебно-методический комплекс обсужден...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...

Учебно-методический комплекс дисциплины обсужден на заседании кафедры компьютерных систем «03» октября 2012 г. Составитель (ли): Т. iconУчебно-методический комплекс дисциплины обсужден на заседании кафедры...
Учебно-методический комплекс составлен в соответствии с требованиями федерального государственного образовательного стандарта высшего...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск