Линейные электрические цепи удовлетворяют принципу наложения


НазваниеЛинейные электрические цепи удовлетворяют принципу наложения
страница7/9
ТипДокументы
1   2   3   4   5   6   7   8   9

Поликристалл - агрегат мелких кристаллов какого-либо вещества, иногда называемых из-за неправильной формы кристаллитами или кристаллическими зёрнами. Многие материалы естественного и искусственного происхождения (минералы, металлы, сплавы, керамики и т. д.) являются поликристаллами. Свойства поликристаллов обусловлены свойствами составляющих его кристаллических зёрен, их средним размером, который колеблется от 1—2 мкм до нескольких мм (в некоторых случаях до нескольких метров), кристаллографической ориентацией зёрен и строением межзёренных границ. Если зёрна ориентированы хаотически, а их размеры малы по сравнению с размером поликристалла, то в поликристалле не проявляется анизотропия физических свойств, характерная для монокристаллов. Если в поликристалле есть преимущественная кристаллографическая ориентация зёрен, то поликристалл является текстурированным и, в этом случае, обладает анизотропией свойств. Наличие границ зёрен существенно сказывается на физических, особенно механических, свойствах поликристаллов, так как на границах происходит рассеяние электронов проводимости, фононов, торможение дислокаций и др. Поликристаллы образуются при кристаллизации, полиморфных превращениях и в результате спекания кристаллических порошков. Поликристалл менее стабилен, чем монокристалл, поэтому при длительном отжиге поликристалла происходит рекристаллизация (преимущественный рост отдельных зёрен за счёт других), приводящая к образованию крупных кристаллических блоков.

Монокристалл — отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и характеризующийся анизотропией свойств. Внешняя форма монокристалла обусловлена его атомно-кристаллической структурой и условиями кристаллизации. Часто монокристалл приобретает хорошо выраженную естественную огранку, в неравновесных условиях кристаллизации огранка проявляется слабо. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза. От монокристалла отличают поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких монокристаллов.

углерод имеет десятки аллотропных модификаций и, соответственно, десятки типов кристаллических решеток. Есть даже аллотропы вообще не образующие решеток.

Что касается кремния, то он обладает гранецентрированной кристаллической решеткой типа алмаза.

56) ЭНЕРГЕТИЧЕСКИЕ ЗОНЫ НОСИТЕЛЕЙ ТОКА В ДИЭЛЕКТРИКАХ И ПОЛУПРОВОДНИКАХ

Для понимания действия лазера на р — n-переходе необходимо вспомнить основные сведения о структуре энергетических уровней носителей тока в диэлектриках и полупроводниках. Проводимость этих материалов зависит от числа электронов и дырок в единице объема и от их подвижности. В энергетической зоне шириной от Е до E+dE произвольной электронной системы в условиях термодинамического равновесия количество электронов определяется выражением

где Z(E) — плотность разрешенных состояний, a F(E)—статистическая функция распределения Ферми — Дирака. Эта функция описывает вероятность заселения данного энергетического состояния. Для свободных электронов в металле Z(E)=CE1^, где С — некоторая постоянная, а функция F(E) имеет вид

где EF— энергия Ферми. Значение ЕРпри температуре 0 К представляет собой наивысшую энергию электрона. Очевидно, что в диэлектрике или полупроводнике EF имеет иной физический смысл, чем в металле. В диэлектрике зона, заполненная электронами (так называемая валентная зона), отделена от пустой зоны проводимости энергетическим интервалом, который называется запрещенной зоной. Это означает, что вероятность заполнения произвольного уровня в запрещенной зоне близка к нулю. В полупроводнике уровень Ферми расположен как раз в запрещенной зоне, примерно в середине зоны. Положение уровня Ферми в общем виде

определяется основным уравнением

где п — число электронов в единице объема. С помощью упрощенной модели полупроводника с узкими валентной зоной и зоной проводимости и широкой запрещенной зоной можно приближенно определить функцию распределения и прежде всего энергию Ферми. Допустим, что узкие зоны достаточно хорошо характеризуются значениями энергий Ес и Ev (рис. 13.2). Обозначим число возможных энергетических состояний в каждой зоне через Z (Z^IO22 см-3). При температуре О К в идеальном диэлектрике зона проводимости пуста, а валентная зона заполнена до предела. При Т>0 К плотности электронов в указанных зонах равны.

58)





59)

Акцептор — в физике твёрдого тела (см. также полупроводники) примесь в кристаллической решётке, которая отдаёт кристаллу дырку. Вводится при ковалентном типе связи.

Акцепторы бывают однозарядными и многозарядными. Например, в кристаллах элементов IV группы периодической системы элементов (кремния, германия) элементы III группы (алюминий, индий, галлий) являются однозарядными акцепторами. Поскольку элементы третьей группы имеют валентность 3, то три электрона образуют химическую связь с тремя соседними атомами кремния в кубической решётке, а электрона для образования четвертой связи недостает. Однако при ненулевой температуре с определенной вероятностью четвертая связь образуется. Электрон, который его образует, имеет энергию на несколько миллиэлектрон-вольт выше энергии потолка валентной зоны. При этом в валентной зоне образуется так называемая дырка, которая может свободно двигаться по кристаллу, и, таким образом, участвовать в электропроводности кристалла.

Для оценки энергии связи дырок на акцепторах часто используют модель водородоподобного центра, в которой энергия связи находится из решения уравнения Шредингера для атома водорода с учетом того, что дырка в кристалле — квазичастица, эффективная масса которой отличается от массы свободного электрона, а также того, что дырка движется не в вакууме, а в среде с определенной диэлектрической проницаемостью. Более строгий расчет энергии основного и возбужденных состояний акцепторных уровней требует учета локального потенциала примеси, а также наличия во многих полупроводниках нескольких ветвей у закона дисперсии дырок (легкие и тяжелые дырки). Акцепторы, энергия связи которых близка к энергии, оцененной из водородоподобной модели, называются мелкими акцепторами.

Обычно эффективные массы дырок малы в сравнении с массой свободного электрона. Кроме того полупроводники имеют достаточно большие значения диэлектрической проницаемости (порядка 10), так что энергия акцептора примерно в 100—1000 раз меньше энергии электрона в атоме водорода. Именно благодаря этим особенностям акцепторные уровни во многих полупроводниках ионизованы уже при комнатной температуре. Учитывая этот факт, волновые функции мелких акцепторных уровней простираются на много периодов кристаллической решетки, имея радиус намного больше чем радиус Бора.



60) Операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идОсновы функционирования

ОУ 741 в корпусе TO-5

Питание

В общем случае ОУ использует двуполярное питание, то есть источник питания имеет три вывода с потенциалами:

U+ (к нему подключается VS+)

0

U- (к нему подключается VS-)

Вывод источника питания с нулевым потенциалом непосредственно к ОУ обычно не подключается, но, как правило, является сигнальной землёй и используется для создания обратной связи. Часто вместо двуполярного используется более простое однополярное, а общая точка создаётся искусственно или совмещается с отрицательной шиной питания.

ОУ способны работать в широком диапазоне напряжений источников питания, типичное значение для ОУ общего применения от ±1,5 В до ±15 В при двуполярном питании (то есть U+ = 1,5…15 В, U- = -15…-1,5 В, допускается значительный перекос).

Простейшее включение ОУ

Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:

здесь

Vout: напряжение на выходе

V+: напряжение на неинвертирующем входе

V−: напряжение на инвертирующем входе

Gopenloop: коэффициент усиления с разомкнутой петлёй обратной связи

Все напряжения считаются относительно общей точки схемы. Рассматриваемый способ включения ОУ (без обратной связи) практически не используется[1] вследствие присущих ему серьёзных недостатков:

Коэффициент усиления с разомкнутой петлёй обратной связи Gopenloop нормируется в очень широких пределах и может изменяться в тысячи раз (зависит сильнее всего от частоты сигнала и температуры).

Коэффициент усиления очень велик (типичное значение 106 на постоянном токе) и не поддаётся регулировке.

Точка отсчёта входного и выходного напряжений не поддаются регулировке.еальным, на основе которого можно построить множество различных электронных узлов.

Идеальный операционный усилитель

Для того, чтобы рассматривать функционирование ОУ в режиме с обратной связью, необходимо вначале ввести понятие идеального операционного усилителя. Идеальный ОУ является физической абстракцией, то есть не может реально существовать, однако позволяет существенно упростить рассмотрение работы схем на ОУ благодаря использованию простых математических моделей.

Идеальный ОУ описывается формулой (1) и обладает следующими характеристиками:

Бесконечно большой коэффициент усиления с разомкнутой петлей обратной связи Gopenloop.[2]

Бесконечно большое входное сопротивление входов V- и V+. Другими словами, ток, протекающий через эти входы, равен нулю.

Нулевое выходное сопротивление выхода ОУ.

Способность выставить на выходе любое значение напряжения.

Бесконечно большая скорость нарастания напряжения на выходе ОУ.

Полоса пропускания: от постоянного тока до бесконечности.

Пункты 5 и 6 в действительности следуют из формулы (1), поскольку в неё не входят временны́е задержки и фазовые сдвиги. Из перечисленных условий следует важнейшее свойство идеального ОУ, упрощающее рассмотрение схем с его использованием:

Идеальный ОУ, охваченный отрицательной обратной связью, поддерживает одинаковое напряжение на своих входах [3][4]

Другими словами, при указанных условиях всегда выполняется равенство: (2)

Не следует думать, что ОУ выравнивает напряжения на своих входах, подавая напряжение на входы «изнутри». На самом деле ОУ выставляет на выходе такое напряжение, которое через обратную связь подействует на входы таким образом, что разность входных напряжений уменьшится до нуля.

Легко убедиться в справедливости равенства (2). Допустим, (2) нарушено — имеет место небольшая разность напряжений. Тогда входное дифференциальное напряжение, усиленное в ОУ, вызвало бы (вследствие бесконечного коэффициента усиления) бесконечно большое выходное напряжение, которое, в соответствии с определением ООС, ещё уменьшило бы разность входных напряжений. И так до тех пор, пока равенство (2) не будет выполнено. Заметим, что выходное напряжение может быть любым — оно определяется видом обратной связи и входным напряжением.

Параметры по переменному току

Ограниченная полоса пропускания. Любой усилитель имеет конечную полосу пропускания, но фактор полосы не особенно значим для ОУ, поскольку они имеют внутреннюю частотную коррекцию для увеличения запаса по фазе.

Ненулевая входная ёмкость. Образует паразитный фильтр нижних частот.

Ненулевая задержка сигнала. Данный параметр, косвенно связанный с ограничением полосы пропускания, может ухудшить действие ООС при повышении рабочих частот.

Ненулевое время восстановления после насыщения .

Нелинейные эффекты

Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).

В моменты насыщения усилитель не действует в соответствии с формулой (1), что вызывает отказ в работе ООС и появлению разности напряжений на его входах, что обычно является признаком неисправности схемы (и это легко обнаруживаемый наладчиком признак проблем). Исключение - работа ОУ в режиме компаратора.

Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ.

Ограниченная скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних ёмкостей.

Ограничения тока и напряжения

Ограниченное выходное напряжение. У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и не может быть ниже, чем потенциал отрицательной шины питания (в случае, если нагрузка отсутствует, или является резистивной и не содержит источник тока). Другими словами, выходное напряжение не может выйти за пределы питающего напряжения. Например, для ОУ opa277[1] выходное напряжение находится в пределах от VS−+0,5 В до VS+-2 В при сопротивлении нагрузки 10 кОм. Ширина этих «мертвых зон» выходного напряжения, которых выход ОУ не может достичь, зависит от ряда условий (сопротивление нагрузки, направление выходного тока и др.). Существуют ОУ, у которых мертвые зоны минимальны, например, по 50 мВ до шин питания при нагрузке 10 кОм для opa340[2], эта особенность ОУ называется «rail-to-rail» (от шины до шины).

Ограниченный выходной ток. Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока — типичное значение максимального тока 25 мА. Защита предотвращает перегрев и выход ОУ из строя.

Мощные ОУ, такие как К157УД1, могут иметь крепление для радиатора.

Ограниченная выходная мощность. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 2 кОм.

Классификация ОУ

По типу элементной базы[6]

На полевых транзисторах

На биполярных транзисторах

На электронных лампах (устарели)

По области применения

Выпускаемые промышленностью операционные усилители постоянно совершенствуются, параметры ОУ приближаются к идеальным. Однако улучшить все параметры одновременно технически невозможно или нецелесообразно из-за дороговизны полученного чипа. Для того, чтобы расширить область применения ОУ, выпускаются различные их типы, в каждом из которых один или несколько параметров являются выдающимися, а остальные на обычном уровне (или даже чуть хуже). Это оправдано, так как в зависимости от сферы применения от ОУ требуется высокое значение того или иного параметра, но не всех сразу. Отсюда вытекает классификация ОУ по областям применения.

Индустриальный стандарт. Так называют широко применяемые, очень дешевые ОУ общего применения со средними характеристиками. Пример "классических" ОУ: с биполярным входом - LM324, с полевым входом - TL084.

Прецизионные ОУ имеют очень малые напряжения смещения, применяются в точных измерительных схемах. Обычно ОУ на биполярных транзисторах по этому показателю несколько лучше, чем на полевых. Также от прецизионных ОУ требуется долговременная стабильность параметров. Исключительно малыми смещениями обладают стабилизированные прерыванием ОУ. Пример: AD707 с напряжением смещения 15 мкВ.

С малым входным током (электрометрические) ОУ. Все ОУ, имеющие полевые транзисторы на входе, обладают малым входным током. Но среди них существуют специальные ОУ с исключительно малым входным током. Чтобы полностью реализовать их преимущества, при проектировании устройств с их использованием необходимо даже учитывать утечку тока по печатной плате. Пример: AD549 с входным током 6·10−14 А.

Микромощные и программируемые ОУ потребляют малый ток на собственное питание. Такие ОУ не могут быть быстродействующими, так как малый потребляемый ток и высокое быстродействие — взаимоисключающие требования. Программируемыми называются ОУ, для которых все внутренние токи покоя можно задать с помощью внешнего тока, подаваемого на специальный вывод ОУ.

Мощные (сильноточные) ОУ могут отдавать большой ток в нагрузку, то есть допустимое сопротивление нагрузки меньше стандартных 2 кОм, и может составлять до 50 Ом.

Низковольтные ОУ работоспособны при напряжении питания 3 В и даже ниже. Как правило, они имеют rail-to-rail выход.

Высоковольтные ОУ. Все напряжения для них (питания, синфазное входное, максимальное выходное) значительно больше, чем для ОУ широкого применения.

Быстродействующие ОУ имеют высокую скорость нарастания и частоту единичного усиления. Такие ОУ не могут быть микромощными, и как правило выполнены на биполярных транзисторах.

Малошумящие ОУ.

Звуковые ОУ. Имеют минимально возможный коэффициент гармоник (THD).

Специализированные ОУ. Обычно разработаны для конкретных задач (подключение фотодатчика, магнитной головки, и др.). Могут содержать в себе готовые цепи ООС или отдельные необходимые для этого прецизионные резисторы.

Возможны также комбинации данных категорий, например, прецизионный быстродействующий ОУ.

Другие классификации

По входным сигналам:

Обычный двухвходовый ОУ;

ОУ с тремя входами [7]: третий вход, имеющий коэффициент передачи +1 (для чего используется внутренняя ООС), используется для расширения возможностей ОУ, например, смещение по напряжению выходных сигналов относительно входных, или возможность построения каскада с высоким выходным сопротивлением синфазному сигналу, что напоминает трансформатор с двумя обмотками, однако каскад на AD8132 передаёт и постоянный ток, что трансформатор не может.

По выходным сигналам:

Обычный ОУ с одним выходом;

ОУ с дифференциальным выходом [8]

Использование ОУ в схемотехнике

Использование ОУ как схемотехнического элемента гораздо проще и понятнее, чем оперирование отдельными элементами, его составляющими (транзисторов, резисторов и т. д.). При проектировании устройств на первом (приближённом) этапе операционные усилители можно считать идеальными. Далее для каждого ОУ определяются требования, которые накладывает на него схема, и подбирается ОУ, удовлетворяющий этим требованиям. Если получается, что требования к ОУ слишком жёсткие, то можно частично перепроектировать схему для обхода данной проблемы.

61.

Передаточная функция — один из способов математического описания динамической системы. Используется в основном в теории управления, связи, цифровой обработке сигналов. Представляет собой дифференциальный оператор, выражающий связь между входом и выходом линейной инвариантной во времени системы. Зная входной сигнал системы и передаточную функцию, можно восстановить выходной сигнал.

Импульсная переходная функция (весовая функция, импульсная характеристика) — выходной сигнал динамической системы как реакция на входной сигнал в виде дельта-функции Дирака. В цифровых системах входной сигнал представляет собой простой импульс минимальной ширины (равной периоду дискретизации для дискретных систем) и максимальной амплитуды. В применении к фильтрации сигнала называется также ядром фильтра. Находит широкое применение в теории управления, обработке сигналов и изображений, теории связи и других областях инженерного дела.

Импульсной характеристикой системы называется её реакция на единичный импульс при нулевых начальных условиях.

62.

Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.

В электродинамике уравнение непрерывности выводится из уравнений Максвелла. Оно утверждает, что дивергенция плотности тока равна изменению плотности заряда со знаком минус,

\operatorname{div}\mathbf{j} + {\partial \rho \over \partial t} = 0

В гидродинамике уравнение непрерывности называют уравнением неразрывности. Оно выражает собой закон сохранения массы в элементарном объеме, то есть непрерывность потока жидкости или газа. Его дифференциальная форма

\frac{\partial \rho }{\partial t}+\operatorname{div}\rho \mathbf{v}=\frac{\partial \rho }{\partial t}+\rho \operatorname{div}\,\mathbf{v}+\mathbf{v}\operatorname{grad}\rho =0,

где \rho = \rho\left(x,y,z,t\right) — плотность потока жидкости (или газа), \mathbf{v}=\mathbf{v}\left( x,y,z,t \right) — вектор скорости жидкости (или газа) в точке с координатами \left(x, y, z\right)в момент времени \,t.

Вектор \mathbf{j}=\rho \mathbf{v}называют плотностью потока жидкости. Его направление совпадает с направлением течения жидкости, а абсолютная величина определяет количество вещества, протекающего в единицу времени через единицу площади, расположенную перпендикулярно вектору скорости.

Для несжимаемых жидкостей \,\rho = \operatorname{const}. Поэтому уравнение принимает вид

\operatorname{div}\,\mathbf{v}=0,

из чего следует соленоидальность поля скорости.

63.

p-n-перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — разновидность гомопереходов, Зоной p-n перехода называется область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p.

Электронно-дырочный переход может быть создан различными путями:

  1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n-область), а в другой — акцепторной (p-область);

  2. на границе двух различных полупроводников с разными типами проводимости.

Если p-n-переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n- к р-области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.Энергетическая диаграмма p-n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении. При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p-области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт — устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.


Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p-n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p-n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 — 106 раз. Благодаря этому p-n-переход может использоваться для выпрямления переменных токов

64.
1   2   3   4   5   6   7   8   9

Похожие:

Линейные электрические цепи удовлетворяют принципу наложения iconКонкурсная документация на проведение открытого одноэтапного конкурса...
Оао «Янтарьэнерго» «Западные электрические сети» и «Городские электрические сети» на 2013 год

Линейные электрические цепи удовлетворяют принципу наложения iconОсновные приемы работ в среде msdev. Константы, переменные, выражения,...
Константы, переменные, выражения, функции в языке Fortran. Линейные алгоритмы. Управляющие конструкции языка Fortran. Простые циклы...

Линейные электрические цепи удовлетворяют принципу наложения iconФилиала ОАО «сетевая компания» Казанские электрические сети
Закировым Рафаилем Фатыховичем (именуемым далее «Работодатель») и коллективом филиала ОАО «Сетевая компания» Казанские электрические...

Линейные электрические цепи удовлетворяют принципу наложения iconПостановление от «15» декабря 2015 г. №2045 Об утверждении технологических...
Ных услуг по принципу «одного окна» в Ханты-Мансийском автономном округе – Югре» и в соответствии с пунктом 34 Плана мероприятий...

Линейные электрические цепи удовлетворяют принципу наложения iconУтвержден
На упаковке посылки должно оставаться достаточно места для написания служебных отметок или наложения штемпелей и ярлыков

Линейные электрические цепи удовлетворяют принципу наложения iconО закупке
РФ, снг, Абхазии, Грузии, Монголии в системе «Холодовой цепи» для нужд фгуп «Московский эндокринный завод»

Линейные электрические цепи удовлетворяют принципу наложения iconРекомендации по реализации мероприятий «дорожной карты» Мероприятие 7
Разработка и утверждение технологических схем1 предоставления государственных услуг исполнительных органов государственной власти...

Линейные электрические цепи удовлетворяют принципу наложения iconГ. Томск, 634034, ул. Советская, 84/3, оф. 306, тел.: (382-2) 421-420, 421-000, 56-41-56
Следуйте по зеленому коридору (Green channel), не заполняя пассажирскую таможенную декларацию, если вывозимые Вами денежные средства...

Линейные электрические цепи удовлетворяют принципу наложения iconОб утверждении технологической схемы предоставления муниципальной...
Правительства Пермского края от 13. 10. 2014 №278-рп «Об утверждении плана мероприятий («дорожной карты») по организации предоставления...

Линейные электрические цепи удовлетворяют принципу наложения icon…дать разъяснение по вопросам трудового законодательства
«…провести проверку по факту …» (невыплаты заработной платы, наложения дисциплинарного взыскания, перевода на др должность без моего...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск