Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов


Скачать 428.57 Kb.
НазваниеТемы для самостоятельной подготовки. Строение электронных оболочек атомов элементов
страница3/4
ТипРешение
filling-form.ru > Туризм > Решение
1   2   3   4

Химические свойства солей.

Разложение при прокаливании

CaCO3=CaO+CO2s

Cоль+металл

Fe+CuSO4=FeSO4+Cu

Соль+соль

AgNO3+NaCl=AgCls+NaNO3

Соль+щелочь

CuSO4+2NaOH=Cu(OH)2s+Na2SO4

Соль+кислота

Na2CO3+2HCl=2NaCl+H2O+CO2s


ХИМИЧЕСКАЯ СВЯЗЬ.КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ И ПОЛЯРНАЯ СВЯЗИ.

Образование химических соединений обусловлено возникновением химической связи между атомами в молекулах и кристаллах.
Химическая связь - это взаимное сцепление атомов в молекуле и кристаллической решётке в результате действия между атомами электрических сил притяжения.
Появление атомной модели Бора, впервые объяснившей строение электронной оболочки, способствовало созданию представления о химической связи и её электронной природе. В соответствии с моделью Бора электроны могут занимать в атоме положения, которым отвечают определенные энергетические состояния, т. е. энергетические уровни. В 1915г. немецкий физик Коссель дал объяснение химической связи в солях, а в 1916 году американский учёный Льюис предложил трактовку химической связи в молекулах. Они исходили из представлений о том, что атомы элементов обладают тенденцией к достижению электронной конфигурации благородных газов (полного заполнения внешнего электронного слоя). Представления Косселя и Льюиса получили названия электронной теории валентности.
Валентность элементов главных подгрупп Периодической системы зависит от числа электронов, находящихся на внешнем электронном слое. Поэтому эти внешние электроны принято называть валентными. Для элементов побочных подгрупп в качестве валентных электронов могут выступать как электроны внешнего слоя, так и электроны внутренних подуровней.
Различают три основных типа химической связи: ковалентную, ионную, металлическую.

Таблица.Типы химической связи и их основные отличительные признаки.

Химическая связь

Связываемые атомы

Характер элементов

Процесс в электронной оболочке

Образующиеся частицы

Кристаллическая решетка

Характер вещества

Примеры

Ионная

Атом металла и атом неметалла

Электрополо-
жительный и
электро-
отрицательный

Переход валентных электронов

Положительные и отрицательные ионы

Ионная

Солеобраз-
ный

NaCl CaO NaOH

Ковалентная

Атомы неметаллов (реже-атомы металлов)

Электроотрица-
тельный реже электрополо-
жительный

Образование общих электронных пар, заполнение молекулярных орбиталей

Молекулы

 

Молекулярная

 

Летучий или нелетучий

Br2 CO2 C6H6

---------

Атомная

Алмазоподоб
ный

Алмаз Si SiC

Металличес
кая

Атомы металлов

Электрополо-
жительный

Отдача валентных электронов

Положительные ионы и электронный газ

Металлическая

Металличес-
кая

Металлы и сплавы

КОВАЛЕНТНАЯ СВЯЗЬ.

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.

Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H2, O2, N2, Cl2 и др.



Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H2O, NF3, CO2. Ковалентная связь образуется между атомами элементов,

Неоходимо ввести понятие электроотрицательность. Электроотрицательность - это способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.

схема
ряд электроотрицательностей

Относительные электроотрицательности элементов (по Полингу)

группа

I

II

III

IV

V

VI

VII

VIII

период

1

H
2,1

 

 

 

 

 

 

 

He
-

2

Li
0,97

Be
1,47

B
2,01

C
2,50

N
3,07

O
3,5

F
4,10

 

Ne
-

3

Na
1,01

Mg
1,23

Al
1,47

Si
1,74

P
2,1

S
2,6

Cl
2,83

 

Ar
-

4

K
0,91

Ca
1,04

Sc
1,20

Ti
1,32

V
1,45

Cr
1,56

Mn
1,60

Fe
1,64

Co
1,70

Ni
1,75

 

Cu
1,75

Zn
1,66

Ga
1,82

Ge
2,02

As
2,20

Se
2,48

Br
2,74

 

Kr
-

5

Rb
0,89

Sr
0,99

Y
1,11

Zr
1,22

Nb
1,23

Mo
1,30

Tc
1,36

Ru
1,42

Rh
1,45

Pd
1,35

 

Ag
1,42

Cd
1,46

In
1,49

Sn
1,72

Sb
1,82

Te
2,01

I
2,21

 

Xe
-

6

Cs
0,86

Ba
0,97

La*
1,08

Hf
1,23

Ta
1,33

W
1,40

Re
1,46

Os
1,52

Ir
1,55

Pt
1,44

 

Au
1,42

Hg
1,44

Tl
1,44

Pb
1,55

Bi
1,67

Po
1,76

At
1,90

 

Rn
-

7

Fr
0,86

Ra
0,97

Ac**
1,00

*Лантаноиды - 1,08 - 1,14
**Актиноиды - 1,11 - 1,20

 

Элементы с большей электроотрицательностью будут оттягивать общие электроны от элементов с меньшей электроотрицательностью.

Для наглядного изображения ковалентной связи в химических формулах используются точки ( каждая точка отвечает валентному электрону, а также черта отвечает общей электронной паре ).
Пример. Связи в молекуле Cl2 можно изобразить так:

схема

Такие записи формул равнозначны. Ковалентные связи обладают пространственной направленностью. В результате ковалентного связывания атомов образуются либо молекулы, либо атомные кристаллические решётки со строго определенным геометрическим расположением атомов. Каждому веществу соответствует своя структура.
С позиции теории Бора образование ковалентной связи объясняется тенденцией атомов преобразовывать свой внешний слой в октет ( полное заполнение до 8 электронов).Оба атома представляют для образования ковалентной связи по одному неспаренному электрону, и оба электрона становятся общими.
Пример. Образование молекулы хлора.

схема

Точками обозначены электроны. При расстановке следует соблюдать правило:электроны ставятся в определённой последовательности-слева, сверху, справа,снизу по одному, затем добавляют по одному, неспаренные электроны и принимают участие в образовании связи.

Новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора. Существует несколько способов образования ковалентных связей за счёт перекрывания электронных облаков.

s-s- связь

схема

s-p- связь

схема

p-p- связь

схема

p-p- связь

схема

σ - связь значительно прочнее  π-связи, причём π-связь может быть только с σ-связью, За счёт этой связи образуются двойные и тройные кратные связи.

Полярные ковалентные связи образуются между атомами с разной электроотрицательностью.

схема

За счёт смещения электронов от водорода к хлору атом хлора заряжается частично отрицательно, водорода-частично положительно.

ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ.

Химические реакции по количеству исходных веществ и продуктов реакции можно разделить на группы:

Тип химической реакции

Определение

Пример

Соединения

Реакции между двумя простыми веществами, или между несколькими сложными, при этом образуется одно сложное или более сложное вещество.

CaO+H2O=Ca(OH)2

PbO+SiO2=PbSiO3

2Na+Cl2=2NaCl

Разложения

Реакции, при которых из одного вещества образуется несколько простых или сложных веществ.

Cu(OH)2=CuO+H2O

CaCO3=CaO+CO2

NH4Cl=NH3+HCl

Замещения

Реакции между сложным и простым веществами, при которых атомы простого вещества замещают один из атомов сложного

CuSO4+Fe=FeSO4+Cu

2KBr+Cl2=2KCl+Br2

Обмена

Реакции между двумя сложными веществами, при которых они обмениваются своими составными частями

AgNO3+KBr=AgBrw

NaOH+HCl=NaCl+H2O

Немного скажу об окислительно-восстановительных реакциях, т.е. реакциях при которых происходит изменение степенй окисления:

реакция

В этой реакции изменились степени окисления у хлора и натрия, следовательно она является окислительно - восстановительной. Натрий отдаёт электроны хлору, он является восстановителем; хлор принимает электроны, является окислителем. Процесс отдачи электронов называется окислением, процесс присоединения - восстановлением. С данными реакциями и процессами познакомимся в разделе" Окислительно-восстановительные реакции"

Познакомимся с основными классами неорганических веществ, которые более подробно изучим позже. В следующих разделах будут встречаться вещества, относящиеся к одному из классов. Данный материал носит ознакомительный характер.

Оксиды..

Оксиды-сложные вещества, состоящие из двух химических элементов, один из которых кислород в степени окисления -2 .

CO2-оксид углерода (IV), H2O-оксид водорода



Основания.

Основания- сложные вещества, состоящие из атома металла , связанного с одной или несколькими гидроксогруппами -ОН

NaOH- гидроксид натрия, Fe(OH)2- гидроксид железа(II)



Кислоты.

Кислоты - сложные вещества, состоящие из одного или нескольких атомов водорода, способных замещаться на атомы металла, и кислотных остатков.

HCl-соляная, или хлороводородная, H2SO4-серная кислота, H3PO4-фосфорная кислота



Соли.

Соли-сложные вещества, состоящие из атомов металла и кислотного остатка.

NaCl-хлорид натрия, MgSO4-сульфат магния, FePO4-фосфат железа (III)


ИОННЫЙ ТИП ХИМИЧЕСКОЙ СВЯЗИ.

Чисто ионной связью называется химически связанное состояние атомов, при котором устойчивое электронное окружение достигается путём полного перехода общей электронной плотности к атому более электроотрицательного элемента.
На практике полный переход электрона от одного атома к другому атому-паренеру по связи не реализуется, поскольку каждый элемент имеет большую или меньшую, но не нулевую, электроотрицательность, илюбая связь будет в некоторой степени ковалентной.
Ионная связь возможна только между атомами электроположительных и электроотрицательных элементов, находящихся в состоянии разноименно заряженных ионов.
Ионы - это электрически заряженные частицы, образующиеся из нейтральных атомов или молекул путем отдачи или присоединени электронов.При отдаче электронов образуется положительно заряженный ион-катион, при присоединении-отрицательный-анион.
При отдаче или присоединении электронов молекулами образуются молекулярные или многоатомные ионы, например О2+ - катион диоксигенила, NO2- -нитрит-ион.
Одноатомные катионы и одноатомные анионы возникают при химической реакции между нейтральнами атомами путем взаимопередачи электронов. При этом атом электроположительного элемента, обладающий небольшим числом внешних электронов, переходит в более устойчивое состояние одноатомного катиона путем уменьшения числа этих электронов. Наоборот, атом электроотрицательного элемента, имеющий большое число электроно на внешнем слое , переходит в более устойчивое для него состояние одноатомного иона путем увеличения числа электронов.
Одноатомные катионы образуются, как правило, металлами, а одноатомные анионы-неметаллами. При передаче электронов металлического и неметаллического элементов стремятся сформировать вокруг своих ядер устойчивую конфигурацию электронной оболочки. Атом неметаллического элемента создает внешнюю оболочку последующего благородного газа, тогда как атом металлического элемента после отдачи внешних электронов получает устойчивую конфигурацию предыдущего благородного газа.

Схема образования ионной связи.

схема

Кулоновские силы притяжения, возникающие при взаимодействии заряженных ионов, сильные и действуют одинаково во всех направлениях. В результате этого расположение ионов упорядочивается в пространстве определенным образом, образуя ионную кристаллическую решётку. Вещества с ионной КР при обычных условиях находятся в кристаллическом состоянии, они имеют высокие температуры плавления и кипения.

Вещество

NaCl

NaOH

KBr

BaF2

BaCl2

Свойство

t пл 0С

801

321

734

1368

961

t кип 0С

1465

1390

1380

2260

2050

МЕТАЛЛИЧЕСКИЙ ТИП ХИМИЧЕСКОЙ СВЯЗИ.

Металлы и их сплавы кристаллизуются в форме металлических решёток. Узлы в металлической решётке заняты положительными ионами металлов. Валентные электроны, отделившиеся от атомов металлов и оставшиеся в узлах кристаллической решётки ионы, более или менее свободно перемещаются в пространстве между катионами и обуславливают электрическую проводимость металлов. Между ионами и свободными электронами возникают электростатические взаимодействия, которые и являются причиной возникновения металлической связи.

СХЕМА ОБРАЗОВАНИЯ МЕТАЛЛИЧЕСКОЙ СВЯЗИ.

схема

Металлическая связь имеет сходство как с ионной (образуется за счёт взаимодействия между заряженными частицами: электронами и ионами), так и с ковалентной ( происходит обобществление электронов, но в отличии от ковалентной связи, где электроны локализованы около определенных атомов, электроны в металлах обобществляются для всего кристалла). Свободные электроны иногда называют электронным газом.
Катионы в металлических решётках не обладают поступательным движением, а совершают колебания вокруг положения узлов решётки. Амплитуда этих колебаний возрастает при повышении температуры, а при достижении температуры плавления металла решётка разрушается. Температура плавления металлов, как правило возрастает с увеличением числа валентных электронов в их атомах

СПЛАВЫ.

Смеси двух или более индивидуальных металлов называются сплавами. В сплавах могут присутствовать в небольших количествах и некоторые неметаллы( углерод, сера, кремний). Распространенным методом получения сплавов является совместное нагревание их составных частей до полного расплавления смеси. Однако некоторые металлы не сплавляются друг с другом в любых отношениях.
Металлические сплавы можно классифицировать так: твёрдые растворы внедрения (часть межузельных полостей решётки занята атомами другого элемента, например атомы углерода в железе-чугун и стали); твёрдые растворы замещения (часть атомов основного вещества заменена на атомы примесного элемента-оловянный припой-64 части олова и 36-свинца); смеси индивидуальных кристаллов металлов; смеси кристаллов интерметалических соединений (сплавляемые металлы образуют химические соединения-в бронзе присутствует соединение Cu3Sn )

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ КОНТАКТНЫМ СПОСОБОМ.

Исходным сырьём для производства серной кислоты могут быть сера, сероводород, сульфиды металлов.
Мы рассмотрим производство серной кислоты контактным способом, при котором исходным сырьём является пирит FeS2

Принципиальная схема получения серной кислоты.

схема производства серной кислоты

Процесс состоит из трех стадий:

Стадия

Процессы

1.Обжиг пирита, Получение оксида серы (II). Очистка печного газа.

Уравнение реакции первой стадии:
4FeS2 + 11O2s 2Fe2O3 + 8SO2 + Q
Измельчённый очищенный влажный (после флотации) пирит сверху засыпают в печь для обжига в "кипящем слое". Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 8000С. Пирит раскаляется до красна и находится в "подвешенном состоянии" из-за продуваемого снизу воздуха. Похоже это всё на кипящую жидкость раскалённо-красного цвета.
За счёт выделяющейся теплоты в результате реакции поддерживается температура в печи. Избыточное количество теплоты отводят: по периметру печи проходят трубы с водой, которая нагревается. Горячую воду используют дальше для центрального отопления рядом стоящих помещений.
Образовавшийся оксид железа Fe2O3 (огарок) в производстве серной кислоты не используют. Но его собирают и отправляют на металлургический комбинат, на котором из оксида железа получают металл железо и его сплавы с углеродом - сталь (2% углерода С в сплаве) и чугун (4% углерода С в сплаве).
Таким образом выполняется принцип химического производства - безотходность производства.

Очистка печного газа

Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный!) и мельчайшие частицы огарка (оксида железа). Такой печной газ необходимо очистить от примесей твёрдых частиц огарка и паров воды.
Очистка печного газа от твёрдых частичек огарка проводят в два этапа - в циклоне (используется центробежная сила, твёрдые частички огарка ударяются о стенки циклона и ссыпаются вниз) и в электрофильтрах (используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра, при достаточном накоплении под собственной тяжестью они ссыпаются вниз), для удаления паров воды в печном газе (осушка печного газа) используют серную концентрированную кислоту, которая является очень хорошим осушителем, поскольку поглощает воду.
Осушку печного газа проводят в сушильной башне - снизу вверх поднимается печной газ, а сверху вниз льётся концентрированная серная кислота. На выходе из сушильной башни печной газ уже не содержит ни частичек огарка, ни паров воды. Печной газ теперь представляет собой смесь оксида серы SO2 и кислорода О2.

2. Окисление SO2 в SO3 кислородом.

Протекает в контактном аппарате.
Уравнение реакции этой стадии:
2SO2 + O2ss 2SO3 + Q
Сложность второй стадии заключается в том, что процесс окисления одного оксида в другой является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

а) температура:

Прямая реакция является экзотермической +Q, согласно правилам по смещению химического равновесия, для того, чтобы сместить равновесие реакции в сторону экзотермической реакции, температуру в системе необходимо понижать. Но, с другой стороны, при низких температурах, скорость реакции существенно падает. Экспериментальным путём химики-технологи установили, что оптимальной температурой для протекания прямой реакции с максимальным образованием SO3 является температура 400-5000С. Это достаточно низкая температура в химических производствах. Для того, чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор. Экспериментальным путём установили, что наилучшим катализатором для этого процесса является оксид ванадия(V) V2O5.

б) давление:

Прямая реакция протекает с уменьшением объёмов газов: слева 3V газов (2V SO2 и 1V O2), а справа - 2V SO3. Раз прямая реакция протекает с уменьшением объёмов газов, то, согласно правилам смещения химического равновесия давление в системе нужно повышать. Поэтому этот процесс проводят при повышенном давлении.
Прежде чем смесь SO2 и O2 попадёт в контактный аппарат, её необходимо нагреть до температуры 400-500°С. Нагрев смеси начинается в теплообменнике, который установлен перед контактным аппаратом. Смесь проходит между трубками теплообменника и нагревается от этих трубок. Внутри трубок проходит горячий SO3 из контактного аппарата. Попадая в контактный аппарат смесь SO2 и О2 продолжает нагреваться до нужной температуры, проходя между трубками в контактном аппарате.
Температура 400-5000С в контактном аппарате поддерживается за счёт выделения теплоты в реакции превращения SO2 в SO3. Как только смесь оксида серы и кислорода достигнет слоёв катализатора, начинается процесс окисления SO2 в SO3.
Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

3. Получение H2SO4

Протекает в поглотительной башне.
А почему оксид серы SO3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде:

SO3 + H2Os H2SO4.

Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды - это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.
Уравнение реакции этого процесса

nSO3 + H2SO4s H2SO4·nSO3


Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.
1   2   3   4

Похожие:

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconСтроение атома
При химических реакциях ядра атомов остаются без изменений, изменяется лишь строение электронных оболочек вследствие перераспределения...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconБилет № Порядок заполнения орбиталей электронами. Схемы строения...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconАктиниды, семейство из 14 химических элементов с атомными номерами...
А. (1942) и под руководством или при участии которого было впервые синтезировано девять А. Выделение А. в специальное семейство связано...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconАктиноиды, актиниды, семейство из 14 химических элементов с атомными...
А. (1942) и под руководством или при участии которого было впервые синтезировано девять А. Выделение А. в специальное семейство связано...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconСтроение атома и периодическая система элементов
Ядро составляют нейтроны и протоны. В химии не изучают ядра атомов, но, тем не менее, ниже мы рассмотрим некоторые характеристики...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов icon учение о том, какие силы определяют его состав и структуру. В случае...
При изучении строения вещества принята естественная последовательность: сначала изучают строение атомов, а затем  строение состоящих...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconРазработка урока для 11 класса (2 часа) Тема
Научить учащихся составлять электронные формулы атомов через использование информационно-коммуникационных технологий, актуализировать...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconСтроение атома и периодическая система элементов Д. И. Менделеева...
Максимальное число электронов в каждой из оболочек, в соответствии со следствием из принципа Паули, равно 2n2, например, сформированная...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconФакультет логопедии утверждаю
Программа предназначена для студентов, обучающихся по направлению специальное (дефектологическое) образование. В программе представлен...

Темы для самостоятельной подготовки. Строение электронных оболочек атомов элементов iconРабочая программа дисциплины комплекснон психолого-педагогическое...
Программа предназначена для студентов, обучающихся по направлению специальное (дефектологическое) образование. В программе представлен...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск