Учебное пособие для бакалавров


НазваниеУчебное пособие для бакалавров
страница13/33
ТипУчебное пособие
filling-form.ru > Туризм > Учебное пособие
1   ...   9   10   11   12   13   14   15   16   ...   33

РАДИАЦИОННАЯ ОПАСНОСТЬ. ВЛИЯНИЕ РАДИАЦИИ НА ОРГАНИЗМ ЧЕЛОВЕКА.



Радиационная опасность – это опасность воздействия радиоактивных излучений на человека и окружающую среду.

Быстрое развитие ядерной энергетики и широкое внедрение источников ионизирующих излучений в различных областях науки, техники и народного хозяйства создали потенциальную угрозу радиационной опасности для человека и загрязнения окружающей среды радиоактивными веществами. Аварии на предприятиях этих отраслей могут привести к массовому поражению людей на больших территориях.

Радиационно опасные объекты (РОО) – это объекты народного хозяйства, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, и загрязнение окружающей среды.

В нашем городе и области имеются потенциальные опасные объекты, представляющие угрозу загрязнения всей территории Санкт-Петербурга или определенной её части в случае аварии на них. К таковым относится, прежде всего, Ленинградская АЭС, расположенная в пос. Сосновый Бор, что в 100 км от центральной части города (Невского проспекта) и 75 км от окраины города. ЛАЭС построена в 1973 г., имеет реакторы типа РБМК-1000 (как и Чернобыльская АЭС). В настоящее время вводится в строй новый реактор повышенной безопасности ВВЭР-640. К другим радиационно опасным объектам относятся:

  • Ленспецкомбинат (могильник для радиоактивных и токсичных отходов (в районе Красного Бора);

  • Научно-исследовательский технологический институт (пос. Сосновый Бор), в котором разрабатывается новый реактор повышенной безопасности ВВЭР-640, самый безопасный в мире;

  • ГИПХ (институт прикладной химии - пос. Капитолово);

  • НИИ им. Крылова;

  • Санкт-Петербургский институт ядерной физики (г. Гатчина);

  • Радиевый институт им. Хлопина, старейший центр в области исследований ядерной физики в России;

  • два судостроительных объединения - Адмиралтейский и Балтийский заводы.

В Санкт-Петербурге, кроме того, свыше 1000 объектов (предприятий) в своей производственной деятельности используют радиоактивные вещества.

В связи с этим необходимо знать, что такое радиация, в каких случаях она опасна для человека, чем проявляются вредные воздействия ее на человека, как оценивается радиационная обстановка в случае аварии на АЭС или других радиационно опасных объектах, изучить способы защиты от воздействия радиоактивных излучений и уметь ими пользоваться.

За последние годы в Российской Федерации был принят ряд законодательно-правовых документов в области защиты населения при ЧС, в том числе и в области защиты от радиоактивных излучений. К таким документам относятся Федеральные законы:

  • «О радиационной безопасности населения», определяющий правовые основы обеспечения радиационной безопасности населения в целях охраны его здоровья;

  • «Об использовании атомной энергии», определяющий правовую основу и принципы регулирования отношений, возникающих при использовании атомной энергии, и направленный на защиту здоровья и жизни людей, охрану окружающей среды, защиту собственности при использовании атомной энергии. Призван способствовать развитию атомной науки и техники, содействовать укреплению международного режима безопасного использования атомной энергии;

  • «О социальной защите граждан, подвергшихся воздействию радиации вследствие катастрофы на ЧАЭС».

2.6.1. ОБЩИЙ РАДИАЦИОННЫЙ ФОН И ЕГО ИСТОЧНИКИ.



Общий радиационный фон, в котором постоянно существует человек, складывается из естественного и техногенного радиационных фонов. В Санкт-Петербурге общий радиационный фон составляет 15 мкр/ч.

Естественный фон создается:

  • космическими излучениями;

  • земной радиацией, т.е. природными радиоактивными веществами, содержащимися в земле, воздухе и биосфере.

Техногенный фон обуславливается:

  • работой атомных реакторов;

  • работой урановых рудников, урановой промышленности;

  • использованием радиоизотопов в народном хозяйстве;

  • местами переработки и захоронения радиоактивных отходов.

Космические лучи приходят на землю в основном из глубин Вселенной, некоторая часть рождается на Солнце во время солнечных вспышек. Одни участки земной поверхности более подвержены их воздействию, чем другие. Северный и южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у земли магнитного поля, отклоняющего заряженные частицы, из которых в основном состоят космические лучи. Существенно так же то, что степень облучения растет с высотой, поскольку при этом уменьшается слой воздуха, играющего роль защитного экрана.

Земная радиация. Уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры. В Бразилии недалеко от Сан-Пауло есть место, где уровень радиации в 800 раз превосходит средний. Известны и другие места на земном шаре с высоким уровнем радиации, например, во Франции, Нигерии, на Мадагаскаре, Иране.

Наиболее опасным из всех естественных источников земной радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раз тяжелее воздуха) радон.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара. Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении. Поступая внутрь помещения, путем просачивания через фундамент и пол из грунта или реже высвобождаясь из материалов, использованных в конструкции дома, радон накапливается в нем. В результате в помещении могут возникать довольно высокие уровни радиации. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения. Концентрация радона в верхних этажах многоэтажных домов, как правило, ниже, чем на первом этаже. Кроме того, источником поступления радона в жилые помещения являются вода и природный газ. Вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит очень много радона.

Техногенный радиационный фон и радиоактивное загрязнение окружающей среды может обуславливаться работой атомных реакторов АЭС и НИИ, урановых рудников и урановой промышленностью, неправильным содержанием мест переработки и хранения радиоактивных отходов, использованием радиоизотопов в народном хозяйстве и последствиями ядерных взрывов (в том числе и при испытаниях ядерного оружия, несмотря на то, что в настоящее время запрещены испытания ядерного оружия в атмосфере, космосе и под водой), а также в связи с использованием радиоактивных источников в космических исследованиях и астронавтике. Определенный вклад в загрязнение окружающей среды может вносить сеть изотопных лабораторий, использующих радионуклиды для научных и производственных целей.

Урановая промышленность занимается добычей, переработкой, обогащением урана и приготовлением ядерного топлива. Основным сырьем для этого топлива является уран-235, в котором под действием тепловых нейтронов происходит реакция деления. В природном уране содержится всего 0,7% урана-235. На каждом этапе производства урановой промышленности, а также на рудниках, возможно загрязнение окружающей среды радионуклидами семейства урана и дочерними продуктами его распада. Жидкие отходы этого производства, содержащие радиоактивные вещества, могут попадать в ближайшие реки и озера. На атомных электростанциях при делении ядерного горючего 80% образующейся энергии превращается в тепло, а 20% выделяется в виде радиоактивных излучений. За время работы реактора накапливается большое количество радиоактивных изотопов. Разрушение реактора мощностью 1000 МВт по общему выходу долгоживущих радионуклидов и загрязнению местности (по цезию–137) эквивалентно взрыву 50 ядерных боеприпасов мощностью   Мт. Однако атомные реакторы не выделяют в окружающую среду в опасных количествах радиоактивных изотопов. Объясняется это тем, что все радиоактивные вещества заключены в замкнутые мощные оболочки и контуры, откуда они могут быть выброшены только при аварии. Аварии ядерных реакторов могут быть вызваны разрушением контура теплоносителя и оболочки твэлов (тепловыделяющих элементов), расплавлением активной зоны, избытком радиоактивности, что может привести к полному разрушению реактора. В этом случае окружающая среда будет загрязнена продуктами деления урана. Состав этих продуктов, уровень радиоактивного загрязнения будут зависеть от мощности реактора, продолжительности его работы и других условий. При нормальной работе реакторов в них образуется 20% газообразных и летучих веществ. При правильных условиях защиты в атмосферу попадет незначительный процент этих веществ. Однако могут случаться и утечки этих веществ, преимущественно через трубы.

Аварийная ситуация может возникать при транспортировке, хранении твэлов и других источников с радиоактивными веществами (РВ).

Радиоактивные нуклиды в качестве закрытых источников ионизирующих излучений широко используют в промышленности, медицине, сельском хозяйстве.

Радиоактивное излучение от этих источников может создавать опасность в окружающей среде только в результате их неудовлетворительного хранения.

Для нашей страны характерно еще и радиоактивное загрязнение отдельных ее регионов. Это результат ряда крупных радиационных аварий: на Чернобыльской АЭС, на ПО «Маяк», в Челябинске-65, Томске-7 и др.

Кроме того, с 1961 по 1990 год, в СССР было затоплено в открытых районах Баренцева моря у Новой Земли более одиннадцати тысяч контейнеров с радиоактивными отходами, 16 аварийных реакторов с атомных подводных лодок, в том числе три ядерных реактора атомохода «Ленин». А в Тихом океане и Японском море затоплено два ядерных реактора. Пойма Енисея почти на 900 км загрязнена радиоизотопами с реакторов Красноярска-26. По оценкам специалистов Россия самая загрязненная радиоактивными веществами страна в мире.

2.6.2. ХАРАКТЕРИСТИКА РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ



Радиоактивными (ионизирующими) излучениями называются излучения, возникающие при самопроизвольном распаде ядер атомов некоторых химических элементов (урана, радия и др.), приводящем к изменению их атомного номера и массового числа. По своей физической природе радиоактивные излучения представляют собой потоки быстро движущихся частиц (, и нейтронов), испускающих ядрами атомов, а также электромагнитное излучение этих ядер (гамма-лучи). Все радиоактивные излучения обладают большими энергиями и могут ионизировать вещество, в котором они распространяются.

Сущность ионизации заключается в том, что под воздействием радиоактивных излучений электрически нейтральные атомы и молекулы вещества распадаются на положительно и отрицательно заряженные частицы – ионы. Ионизация вещества всегда сопровождается изменением его основных физико-химических свойств, а для биологической ткани – нарушением ее жизнедеятельности. Поэтому радиоактивные излучения и оказывают на живой организм поражающее действие. Ионизирующая способность радиоактивного излучения может быть оценена показателем удельной ионизации, измеряемой числом пар ионов вещества, создаваемых радиоактивным излучением на пути в один сантиметр. Чем больше величина удельной ионизации, тем быстрее расходуется энергия излучения (тем меньший путь пройдет излучение в веществе до полной потери своей энергии), тем опаснее радиоактивное излучение.

К основным видам радиоактивных излучений относятся , , -излучения, а также нейтронное излучение.

-излучение представляет собой поток положительно заряженных частиц (-частица – это ядро атома гелия, состоящее из двух протонов и двух нейтронов). Длина пробега частиц в воздухе 3-11 см, в живых тканях - сотые доли миллиметра. Обладает наибольшей ионизирующей и наименьшей проникающей способностью, внешнее облучение практически безвредно, попадание этих частиц внутрь организма очень опасно.

-излучение представляет собой поток частиц, отрицательно или положительно заряженных (-частица – это излучённые из ядра атома электрон или позитрон). Скорость распространения в воздухе 20 м/с, в живых тканях - 1-3 см/с. Ткань одежды задерживает до 50% -частиц; на глубину до 1 мм проникает 20-25% частиц, попавших непосредственно на кожу. Попадание их в организм и внешнее воздействие опасны.

-излучение – это электромагнитное излучение, выпускаемое ядрами атомов при радиоактивных превращениях. Скорость распространения в воздухе до 700 м/с и более, живые ткани -излучение пронизывает насквозь. -лучи испускаются квантами (порциями), не имеют электрического заряда, поэтому ионизирующая способность значительно ниже, чем у предыдущих излучений. Но зато они обладают большой проникающей способностью и распространяются на расстоянии до 1000 м и вследствие этого очень опасны при внешнем облучении.

Нейтронное излучение представляет собой поток нейтронов. Скорость их распространения может достигать 20 000 км/с. Так как нейтроны не несут электрического заряда, они легко проникают в ядра атомов и захватываются ими. Нейтроны легко проникают в живые ткани и поэтому оказывают сильное поражающее действие при внешнем и внутреннем облучении.

. Внутреннее облучение создается радиоактивными веществами, попавшими внутрь организма с воздухом, водой и пищей. При внешнем облучении наиболее опасны излучения, обладающие высокой проникающей способностью и находящиеся вне человека, а при внутреннем – обладающие высокой ионизирующей способностью.

2.6.3. ОСНОВНЫЕ ДОЗИМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ. ЕДИНИЦЫ ИЗМЕРЕНИЙ.



К основным дозиметрическим величинам относятся: доза облучения, мощность дозы излучения(уровень радиации) и степень(плотность) радиоактивного загрязнения. Дозой облучения называется часть энергии,переданное ионизирующим излучением веществу и поглощенное им.

Дозу облучения организм может получить от любого радионуклида или их смеси независимо от того, находятся ли они вне организма или внутри его (в результате попадания с пищей, водой или воздухом).

Различают четыре вида доз облучения: экспозиционную, поглощенную, эквивалентную и эффективную.

Экспозиционная (или физическая) доза облучения – это количество энергии только рентгеновских и -лучей, способных ионизировать сухой воздух. Чем больше доза, тем выше степень ионизации. За единицу измерения экспозиционной дозы -излучения в воздухе принят рентген (внесистемная единица измерения). Рентген (р) – это такая доза облучения, при которой в 1 см3 сухого воздуха при Т=00С и давлении 760 мм рт. ст. образуется 2,08 миллиардов пар ионов. Производными от рентгена единицами являются миллирентген (мр), равный 0,001 р и микрорентген (мкр), равный 0,000001 р. В системе «Си» единицей измерения экспозиционной дозы является кулон на кг (Кл/кг). 1р=2,58*10-4 Кл/кг.

Поглощенная доза – это количество энергии различных излучений, поглощенное единицей массы облучаемого тела. Измеряется в радах (внесистемная единица). Рад – это такая поглощенная доза, при которой количество поглощенной энергии в 1 грамме любого вещества составляет 100 эрг независимо от вида энергии излучения. В системе «Си» единицей измерения этой дозы является грей (Гр). 1 рад = 0,01 Гр (1 Гр = 100 рад). Производными рада являются: миллирад (мрад), и микрорад (мкрад). При дозе облучения в 1р поглощенная доза в воздухе составит 0,87 рад, а в воде и живой ткани 0,93 рада. Поэтому о поражающем действии излучения на живые ткани организма можно судить по эффекту ионизации воздуха -излучением, т.е. 1р = 0,93 рада.

Но поглощенная доза не учитывает того, что при одинаковом ее значении -излучения гораздо опаснее  или -излучений из-за своей выраженной ионизирующей способности.

Если принять во внимание этот факт, то поглощенную дозу принято умножать на коэффициент (К), отражающий способность излучения данного вида повреждать ткани организма (т.е. вызывать ионизирующий эффект): -излучение считается при этом в 20 раз опаснее других видов излучений, т.е. установлены коэффициенты для пересчета поглощенной дозы. Так, для -излучения К=20, нейтронного – 10, для  и -излучений - 1.

Пересчитанную таким образом поглощенную дозу называют эквивалентной дозой Дэквпогл*К. Её измеряют в бэрах (внесистемная единица) – биологический эквивалент рентгена, 1 бэр – это эквивалентная доза излучения, соответствующая поглощенной энергии любого вида излучения, биологическое действие которого эквивалентно действию 1 рентгена (рада) -излучения. В системе «Си» единицей измерения является зиверт (Зв). Производным бэра является миллибэр (мбэр) и микробэр (мкбэр). (1 бэр = 0,01 Зв, 1 Зв = 100 бэр). Для удобства пользования единицами измерения принято, что 1 р  1 рад  1 бэр.

Эффективная доза – это эквивалентная доза, используемая как мера риска возникновения отдаленных последствий облучения организма человека и отдельных его органов с учетом их радиочувствительности. Измеряется в зивертах.

Для характеристики скорости изменения дозы во времени применяется величина мощность дозы излучения (уровень радиации – Р). Уровень радиации равен дозе, создаваемой за единицу времени P=dД/dt, т.е. характеризует скорость накопления дозы. Единицами измерения мощности дозы является рентген/час (р/ч), рад/час (рад/ч), бэр/час (бэр/ч), и соответственно им производные милли- и микро- , т.е. мр /ч, мкр/ч и т.д.

Произведение уровня радиации (Р) на время (Т) облучения дает дозу облучения (Д), т.е. Д = Р х Т (р, рад, бэр, Зв).

Поэтому, чем больше уровень радиации, тем меньшее время могут находиться на загрязненном участке территории люди, чтобы полученная доза облучения не превысила допустимую. Уровень радиации пропорционален активности радиоактивного вещества, а последнее, согласно закону радиоактивного распада, непрерывно уменьшается во времени. Следовательно, уровень радиации на местности после ее радиоактивного загрязнения также непрерывно снижается, т.е. происходит спад уровня радиации.

Величину степени загрязнения радиоактивными веществами можно измерять в единицах уровней радиации по гамма излучению в микро рентгенах в час (мкр/ч). Среднюю величину радиационного фона на территории России и Санкт-Петербурга, составляющую в среднем 15 мкр/ч, специалисты считают нормой, т.е. ПДУ (предельно допустимые уровни) от 10 до 60 мкр/ч. Во Франции средняя величина радиационного фона составляет 18-35 мкр/ч, в Бразилии максимальный радиационный фон достигает 100 мкр/ч.

Установлено, что для продуктов питания (клюква, мясо, грибы, чай) безопасная степень загрязнения радиоактивными веществами допустима до 31 мкр/ч.

Степень радиоактивного загрязнения определяется количеством выпавших радиоактивных веществ (РВ). Количество РВ принято оценивать его активностью, под которой понимают число распадов ядер атомов в единицу времени. За единицу активности, т.е. количества РВ, принята единица, названная Кюри (Ки) – это внесистемная единица, а в системе «Си» единицей измерения активности является Беккерель (Бк). 1 Ku = 3,7  1010 Бк. 1Кюри – такое количество РВ, в котором происходит 37 миллиардов распадов ядер атомов в одну секунду.

Степень загрязнения РВ почвы, продуктов, воды и др. оценивается удельной активностью: Ku/м2, Ku/км2, Ku/л (кюри на 1 м2, кюри на 1 км2, кюри на 1 литр). Применительно к загрязненной РВ местности активность относят к размерам этой площади (м2, км2). Путем расчетов определено, что 1 Ku/км2 =10 мкр/ч.

Федеральным законом «О радиационной безопасности населения» установлены основные гигиенические нормативы (допустимые пределы доз) облучения на территории Российской Федерации: для населения средняя годовая эффективная доза равна 0,001 зиверта (0,1 бэр), или за период жизни (70 лет) – 0,07 зиверта (7 бэр). Для работающих с источниками излучения средняя годовая доза равна 0,02 зиверта (0,2 бэр), а за период трудовой деятельности (50 лет) – 1 зиверт (100 бэр).

Источниками дополнительного облучения человека в процессе жизни являются:

  • просмотр одного хоккейного матча по TV – 1 мкбэр;

  • ежедневный трехчасовой просмотр TV в течение года – 0,5 мбэр;

  • перелет самолетом на расстоянии 2400 км – 1 мбэр;

  • облучение при флюорографии (только грудная клетка) – 370 мбэр;

  • облучение при рентгеноснимке зуба (местное) – 3 бэра.

Допустимые дозы облучения за все время работы на АЭС: для женщин – 30 бэр (0,3 зв), для мужчин – 60 бэр (0,6 зв).

На военное время определены дозы облучения, которые не приводят к выходу людей из строя (приказ Министра обороны 1983 г. № 310): однократная доза облучения за первые четверо суток – 50 рад (бэр), за один месяц – 100 рад (бэр), за 3 месяца – 200 рад (бэр), за один год – 300 рад (бэр).

В результате воздействия радиоактивного излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы, связанные с ионизирующей способностью этих излучений. Известно, что 2/3 общего состава ткани человека составляют вода и углерод. Вода под воздействием излучения расщепляется на водород Н и гидроксильную группа ОН, которая образует продукты высокой химической активности: гидратный оксид НО2 и перекись водорода Н2О2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. В результате нарушается нормальное течение биохимических процессов и обмен веществ в организме.

В зависимости от величины эффективной дозы облучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми.

Малые дозы облучения при длительном воздействии могут привести к развитию раковых поражений или к генетическим повреждениям, появляющимся через несколько или много лет.

Большие дозы облучения приводят к развитию у человека острой лучевой болезни (ОЛБ). Считается, что однократное облучение в дозе менее 100 рад (бэр) не вызывает ОЛБ. Дозы, приводящие к развитию острой лучевой болезни при одноразовом облучении или облучении за короткое время (4 суток) приведены ниже:

100 – 200 рад – первая степень – легкая;

200 – 400 рад – вторая степень – средняя;

400 – 600 рад – третья степень – тяжелая;

600 – 1000 рад – четвертая степень – крайне тяжелая.

Характерной особенностью течения ОЛБ является фазность (стадии или периоды в течение заболевания). Различают 4 периода в течении ОЛБ при любой степени тяжести:

  1. Начальный период (первичная реакция на облучение);

  2. Скрытый, или латентный период (период мнимого благополучия);

  3. Разгар болезни (период выраженных клинических проявлений);

  4. Период разрешения болезни (с полным или частичным выздоровлением, а в крайне тяжелых случаях – летальным исходом).

В момент облучения пострадавший никаких ощущений не испытывает.


1   ...   9   10   11   12   13   14   15   16   ...   33

Похожие:

Учебное пособие для бакалавров iconУчебное пособие для бакалавров по направлению подготовки 38. 03. 01. 62 " Экономика"
Бианкина О. А., Казенков О. Ю., Орехов В. И., Орехова Т. Р., Яковлев С. С. Страхование по направлению подготовки 38. 03. 01. 62 Экономика...

Учебное пособие для бакалавров iconУчебное пособие для бакалавров по направлению подготовки 38. 03....
Бианкина А. О., Казенков О. Ю.,Орехов В. И., Орехова Т. Р., Яковлев С. С. Налоги и налоговая система РФ по направлению подготовки...

Учебное пособие для бакалавров iconУчебное пособие для бакалавров по направлению подготовки 38. 03....
Бианкина А. О.,Орехов В. И., Орехова Т. Р. Аудит качества по направлению подготовки 38. 03. 04. 62 Государственное и муниципальное...

Учебное пособие для бакалавров iconУчебное пособие для бакалавров по направлению подготовки 38. 03....
Бианкина А. О, Казенков О. Ю., Орехов В. И., Орехова Т. Р., Яковлев С. С. Маркетинг территорий по направлению подготовки 38. 03....

Учебное пособие для бакалавров iconУчебное пособие для студентов по направлению подготовки бакалавров 080200. 62 «Менеджмент»
Учебное пособие предназначено для студентов, обучающихся по направлению подготовки бакалавров 080200. 62 «Менеджмент», по профилю...

Учебное пособие для бакалавров iconУчебное пособие для бакалавров направления подготовки 230700. 62...
Учебное пособие для бакалавров направления подготовки 230700. 62 «Прикладная информатика в области экономики»

Учебное пособие для бакалавров iconУчебное пособие санкт-петербург 2016 ббк 65. 23 О 36 О36 Управление...
Управление затратами труда на предприятии. Для бакалавров по направлению «Управление государственными и частными предприятиями» всех...

Учебное пособие для бакалавров iconУчебное пособие Учебное пособие Владимир 2016 г. Учебное пособие...
«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Учебное пособие для бакалавров iconУчебное пособие
Учебное пособие предназначено для подготовки студентов экономико-управленческих специальностей по программе группового проектного...

Учебное пособие для бакалавров iconУчебное пособие предназначено для бакалавров института управления...
Учебное пособие предназначено для бакалавров института управления и экономики лесного сектора всех форм обучения, а также слушателей...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск