Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело»


НазваниеКонспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело»
страница4/23
ТипКонспект
filling-form.ru > Туризм > Конспект
1   2   3   4   5   6   7   8   9   ...   23

Основные принципы оценки перспектив нефтегазоносности
акваторий


Пока речь может идти только о принципах, так как степень изученности геологического строения разных районов недостаточна для более детального прогнозирования.

Действительно, из всех морфоструктурных элементов морей и океанов, перспективных в нефтегазоносном отношении, поиски нефти и газа проводились и проводятся в основном на шельфах, и при этом не во всех типах впадин, известных на шельфах. В настоящее время пока еще нет подробных тектонических карт зон шельфа и других морфоструктурных элементов, которые позволили бы достаточно надежно выделить территории, перспективные в нефтегазоносном отношении. Используя имеющиеся тектонические карты различных континентов, а также батиметрические карты морей и океанов, можно лишь наметить зоны возможного развития структурных элементов различного типа. Точное же местоположение последних, их границы, могут быть определены в результате детальных геолого-геофизических исследований.

Для шельфовых морей и отдельных участков дна океанов весьма приближенно выделяются зоны, отличающиеся характером и типом впадин, которые дифференцируются по расположению на шельфе следующим образом: впадины, расположенные частично на суше, частично на шельфе; впадины, расположенные только в пределах шельфа; впадины, расположенные частично на шельфе, частично на континентальном склоне. При этом последний тип следует подразделять на стабильные, нестабильные трансгрессивные и нестабильные регрессивные впадины.

В пределах шельфов по тектонической природе различают впадины внутриплатформенные, краеплатформенные, предгорные, межгорные и гетерогенные. Кроме того, каждая из впадин классифицируется по времени начала и конца формирования.

Значительно сложнее выделение перспективных в нефтегазоносном отношении зон на континентальном склоне. Очевидно, при современной изученности данного морфоструктурного элемента можно лишь весьма предположительно выделить в качестве перспективных зоны стабильного и нестабильного трансгрессивного склонов. При этом характер нефтегазоносности различных типов континентальных склонов будет неодинаков.

На стабильном склоне можно ожидать залежи нефти и газа в основном литологического типа, связанные с выклиниванием пластов. Значительно реже и в подчиненных количествах могут быть залежи нефти и газа структурного типа, связанные со структурными формами подстилающих рыхлые осадки консолидированных осадочных пород, образовавшихся еще в тот этап развития, когда данный участок земной коры представлял собой часть шельфа. На трансгрессивном нестабильном континентальном склоне возможно существование всех типов залежей нефти и газа, поскольку этот участок коры в недалеком геологическом прошлом являлся континентальным шельфом или участком суши.

На континентальном подножии перспективными могут быть участки стабильного типа, а также мобильного трансгрессивного подтипа. В первом случае, скорее всего, могут быть развиты присбросовые залежи нефти и газа, во втором возможно наличие залежей всех типов.

Весьма предположительно в пределах абиссальных глубин окраин океанов и внутриконтинентальных морей и заливов можно выделить зоны, перспективные в нефтегазоносном отношении. В первую очередь сюда следует отнести абиссальные части бассейнов, расположенные вблизи мобильных и стабильных континентальных склонов (краевые валы), и внутриокеанических поднятий, а также внутриконтинентальные бассейны (Черного и Каспийского морей, Мексиканского залива).

Вероятно, рифтовые долины и глубоководные желоба, выполненные доста­точно мощной толщей осадков, весьма перспективны в нeфтeгaзoнocнoм oтнoшeнии.

Таким образом, по степени перспективности в нефтегазоносном отношении и степени разведанности и изученности можно выделить следующие типы акваторий:

  • с установленной нефтегазоносностью;

  • высокоперспективные;

  • перспективные;

  • возможно перспективные, требующие выяснения;

  • неперспективные;

  • неизученные, перспективы не известны.

Принципы отнесения акваторий к тому или иному типу следующие.

К акваториям с установленной нефтегазоносностью относятся такие, в пределах которых выявлены месторождения нефти и газа.

К высокоперспективным можно отнести три типа акваторий: а) расположенные в пределах структурных впадин, нефтегазоносность которых на суше доказана; б) расположенные в пределах таких структурных впадин, в которых установлены признаки нефти и газа как на смежной суше, так в самих акваториях; в) расположенные в пределах структурных впадин такого типа, нефтегазоносность которых доказана на суше или в других акваториях.

Отнесение акваторий первого типа к высокоперспективным вполне правомерно и подтверждено всей историей поисково-разведочных работ в различных акваториях мира. По существу, во всех акваториях, расположенных на продолжении нефтегазоносных впадин суши, в пределах которых проводились поисково-разведочные работы, выявлены месторождения нефти или газа.

Отнесение к высокоперспективным акваторий, указанных в пункте «б», обосновывается выявленными закономерностями распределения нефти и газа в земной коре и в первую очередь закономерностью, согласно которой залежи нефти и газа всегда имеются в пределах наиболее погруженных частей впадин. Блестящим подтверждением этого положения является открытие нефтяных и газовых месторождений в Бассовом проливе, в заливах Сирт, Кука, Суэцком и др.

Высокая перспективность акваторий третьего типа основана на методе аналогии, блестяще примененном при прогнозировании нефтегазоносности Русской и Каракумской платформ.

К категории перспективных отнесены акватории, способные, судя по общегеологическим данным, содержать залежи нефти и газа, но местоположение собственно перспективных районов не определено, поскольку нефтегазоносность в них связана с отдельными структурными впадинами, границы которых еще не установлены. Примером подобного региона может являться Атлантический шельф США. Хотя К. О. Эмери намечает на этом шельфе зоны различной степени перспективности, все же такое районирование основывается скорее на общих соображениях, чем на конкретных данных. К перспективным относятся также зоны мобильного шельфа, мобильного трансгрессивного континентального склона, стабильного континентального подножия.

Возможно перспективными акваториями, требующими выяснения, являются участки шельфов и континентальных склонов смешанных типов, поскольку их перспективы зависят от интенсивности вулканической деятельности.

Неперспективные акватории расположены в пределах щитов и складчатых зон, сложенных метаморфическими и метаморфизованными породами, а также в областях развития талассократонов, характеризующихся сплошным развитием вулканических образований.

1.4. Газогидраты – нетрадиционные скопления углеводородов
в акваториях мира. Новейшая история изучения газогидратов


1.4. Газогидраты 

По мере того как лозунг «XXI век – век газа» проникает в общественное сознание, растет интерес и к такому нетрадиционному источнику газа, как залежи газогидратов.

Мировой энергетический рынок оперирует цифрами запасов нефти и газа в тех или иных регионах. На них, собственно, и базируется мировая конъюнктура спроса и предложения на углеводородное сырье. Сотни экспертов неустанно анализируют сроки выработки невосполнимых ресурсов. 20 лет? Ну, хорошо, 30 лет. Что потом? За счет чего будет формироваться энергетический баланс планеты? Какие альтернативные нефти и газу энергоносители будут представлять коммерческий интерес не в столь отдаленном будущем? Один из ответов, похоже, уже есть. Метан газогидратных залежей. На суше уже выявлено несколько месторождений и проведена пробная добыча в зонах вечной мерзлоты России, Канады и Аляски. Геофизики разных стран, занимающиеся изучением газовых гидратов, пришли к выводу, что запасы газового гидрата в сотни раз превышают запасы нефти и природного газа. «Планета буквально напичкана газогидратами», – уверенно заявляют многие. Если прогнозируемые запасы газа на планете составляют от 300 до 600 трлн кубометров, то прогнозные запасы газового гидрата – более 25 000 трлн кубометров. На них человечество, абсолютно не ограничивая потребление энергии, может безбедно жить сотни лет.

Газовые гидраты (или газогидраты) – молекулы газа, чаще всего метана, «вделанные» в ледяную или водяную кристаллическую решетку. Газовый гидрат образуется при высоких давлениях и низких температурах, поэтому в природе встречается либо в осадках глубоководных морских акваторий, либо в сухопутной зоне вечной мерзлоты, на глубине несколько сотен метров ниже уровня моря. В процессе формирования этих соединений при низких температурах в условиях повышенного давления молекулы метана преобразуются в кристаллы гидратов с образованием твердого вещества, по консистенции похожего на рыхлый лед. В результате молекулярного уплотнения один кубометр природного метан-гидрата в твердом состоянии содержит около 164 м3 метана в газовой фазе и 0,87 м3 воды. Как правило, под ними находятся немалые запасы подгидратного газа. Предполагается весь спектр – от крупных пространственных полей массивных скоплений до рассеянного состояния, включая любые иные, доселе не известные формы.

Предположение о том, что на глубине нескольких сотен метров ниже морского дна находится зона, содержащая газогидраты, впервые было высказано российскими океанологами. Позднее оно было подтверждено геофизиками многих стран. С конца 1970-х годов в рамках международных океанологических программ начались целенаправленные исследования океанического дна на поиски газогидратов. Регионально-геофизические, сейсмические, геоморфологические, акустические исследования сопровождались бурением в общей сложности нескольких тысяч скважин на глубине воды в пределах до 7 000 м, из которых было отобрано 250 км керна. В результате этих работ, организованных научными институтами и университетскими лабораториями разных стран, на сегодня детально исследованы первые сотни метров дна Мирового океана суммарной площадью 360 млн км2. В итоге обнаружены многочисленные свидетельства наличия газогидратов в придонной части осадочной толщи океанов, преимущественно вдоль восточной и западной окраин Тихого океана, а также восточных окраин Атлантического океана. Однако, в основном, эти свидетельства основываются на косвенных данных, полученных по результатам сейсмики, анализов, каротажа и др. К фактически же доказанным можно отнести лишь несколько крупных скоплений, наиболее известное из которых расположено в зоне океанической гряды Блейка у юго-восточного побережья США. Там в виде единого протяженного поля на глубине воды 2,5–3,5 км может содержаться около 30 трлн м3 метана.

Несмотря на наличие в океане большого количества газогидратов, в качестве альтернативного источника природного газа они могут рассматриваться только в отдаленной перспективе. Мнение нефтяников, выраженное в докладе компании Chevron сенату США в 1998 году, звучит еще более жестко. Оно сводится к тому, что в пределах океана газогидраты находятся преимущественно в рассеянном состоянии или в небольших концентрациях и не представляют коммерческого интереса. К такому же заключению пришли и геологи российского «Газпрома».

Есть и другие точки зрения. Если поднять газогидраты из глубины моря на поверхность, то можно наблюдать поразительный эффект – газогидраты начнут пузыриться, шипеть и на глазах распадаться. Впервые российские ученые увидели такую картину в 70-е годы прошлого века, когда во время экспедиции в Охотское море со дна на палубу корабля были подняты первые образцы «ледяного газа». Самое интересное, что при «таянии» газогидрата твердое вещество, минуя жидкую фазу, переходит в газ, который таит в себе огромную энергию. Если этот газ выпустить на волю сразу, он может вызвать экологическую катастрофу. Но если его обуздать, польза будет великая. Ведь энергетические запасы газогидратов намного выше, чем залежи нефти и газа. Так считают многие исследователи.

Согласно имеющимся на сегодняшний день подсчётам, ориентировочное количество метана, содержащегося в виде кристаллогидратов в донных отложениях Мирового океана и в вечной мерзлоте, составляет не менее 250 000 трлн м3. В пересчете на традиционные виды топлива это более чем вдвое превышает количество имеющихся на планете запасов нефти, угля и газа вместе взятых.

Природные газогидраты сохраняют стабильность или при очень низких температурах в условиях вечномерзлых пород на суше, или в режиме сочетания низкой температуры и высокого давления, который присутствует в придонной части осадочной толщи глубоководных районов Мирового океана. Установлено, что зона стабильности газогидратов (ЗСГ) в условиях открытого океана простирается начиная с глубины воды примерно 450 м и далее под океаническим дном до уровня геотермального градиента осадочных пород. Для обнаружения газогидратов используются геофизические методы, а также бурение осадочных пород. Гораздо реже газогидраты встречаются вблизи морского дна (на глубине нескольких метров от его поверхности) в пределах газовыделяющих структур, похожих на грязевые вулканы. Так происходит, например, на Черном, Каспийском, Средиземном и Охотском морях. Мощность ЗСГ повсеместно составляет примерно несколько сотен метров. Потенциальные ресурсы метана находятся не только в пределах ЗСГ в твердом виде, но и запечатаны под ней в естественном газовом состоянии. По большинству оценок, в океанах содержится примерно вдвое больше метана, чем во всех других видах горючих ископаемых, обнаруженных на материках и в пределах шельфовой зоны. Правда, есть и скептики, которые считают эту оценку сильно завышенной. Вопрос, однако, не только в количестве метана.

Главное – какая часть этого газа пребывает не в рассеянном состоянии, а сконцентрирована в скопления, достаточно крупные для обеспечения рентабельности их разработки. На сегодня нет четкого представления о форме нахождения газогидратов в океане.

В отличие от океанических, скопления газогидратов на суше и в зоне прилегающего шельфа рассматриваются в ракурсе вполне реальной перспективы. Впервые газогидратная залежь на суше была открыта в 1964 г. в России на месторождении Мессояха в Западной Сибири. Там же на протяжении первой половины 1970-х гг. проводилась и первая в мире опытная добыча. Позднее аналогичные залежи были обнаружены в районе дельты реки Маккензи в Канаде. Первые крупномасштабные исследования скоплений газогидратов на суше и прилегающем шельфе проводились под эгидой Департамента по энергетике США в 1982–1991 гг. За десятилетие было установлено присутствие залежей твердого метана на Аляске, изучено 15 зон скопления газогидратов на шельфе, проведено моделирование процессов депрессирования гидратных соединений и термального извлечения газообразного метана. На месторождении Прадхо Бей на Аляске была осуществлена пробная добыча метана. Ресурсы газа газогидратных залежей in situ на суше и шельфе США оценены в 6 000 трлн м3. Это значит, что извлекаемые запасы, даже при коэффициенте извлечения не более 1 % составляют 60 трлн м3, что вдвое больше, чем суммарные доказанные запасы всех традиционных месторождений газа США.

В самые последние годы, после опубликования результатов программы геологической службы США, интерес к залежам газогидратов на суше резко вырос и географически расширился. В 1995 г. японское правительство инициировало аналогичную программу на шельфе страны. По утверждению японских геологов, к настоящему времени степень изученности выявленных ресурсов приближается к той стадии, когда их можно переводить в категорию запасов. В 1998 г. в Канаде в дельте реки Маккензи была пробурена экспериментальная скважина Mallik, по данным которой было установлено наличие протяженного поля скоплений газогидратов, их суммарный массив оценен в 4 млрд м3/км2. Эти исследования проводятся Japan Petroleum Exploration Co., Ltd. и рядом японских промышленных компаний с участием геологической службы США, Канады и нескольких университетов. С 1996 г. исследования шельфовой зоны и картирование выявленных скоплений, под эгидой правительства и силами государственной газовой компании страны ведутся в Индии. Европейский Союз принял решение о создании специальных фондов по финансированию аналогичных программ, а в США интерес к газогидратным залежам приобрел законодательный статус: в 1999 г. Конгресс США одобрил специальный акт, касающийся разработки широкомасштабной программы поисков и разработки метангидратных залежей на суше и шельфах страны.

Добыча газогидратов пока не имеет стандартных промышленных технологий. Некоторые эксперты считают, что Россия – самая богатая страна по залежам природного газа, его запасов хватит еще на 200–250 лет, так что промышленная добыча газогидратов пока не является для нашей страны задачей первостепенной важности.

Метан из газогидратных залежей – энергоноситель будущего, которое, по самым оптимистичным оценкам, наступит не ранее второго десятилетия XXI в. Вообще надежным показателем степени перспективности всякого нового направления служат крупные иностранные компании: интерес, который они начинают проявлять к той или иной области нефтегазового бизнеса, обычно является первым симптомом появления новых тенденций. Не случайно в реестре большинства компаний за последние годы выросла доля активов, связанных с газом; именно крупные нефтяные компании ведут массированное наступление на глубоководный шельф; закономерно и то, что в новом, пока мало коммерческом направлении, связанном с переработкой природного газа в жидкое топливо (Gas to liquids, GTL) фигурируют компании ARCO, BP, Amoco, Chevron, Exxon, Shell и другие. А вот к природным газогидратам нефтяные компании пока интереса не проявляют.

Между тем, представители экологических организаций предупреждают, что активное использование метана, извлекаемого из гидратов, ещё более усугубит ситуацию с потеплением климата, поскольку метан оказывает более сильный «парниковый» эффект, чем углекислый газ. Кроме того, некоторые учёные высказывают опасения, что добыча гидратов метана на морском дне может привести к непредсказуемым изменениям его геологической структуры.

Установлено, что из одного литра «твердого топлива» можно получить 168 литров газа. Поэтому в ряде стран, таких как США, Япония, Индия, уже разработаны национальные программы исследования промышленного использования газовых гидратов в качестве перспективного источника энергии. Так, индийская национальная программа нацелена на широкомасштабное исследование месторождений природных газовых гидратов, находящихся в пределах континентального склона вокруг полуострова Индостан. Индийское правительство выделило значительные средства для реализации этой программы. В соответствии с ней Индия намеривается начать промышленную добычу природного газа из газовых гидратов.

Генеральный директорат по углеводородам (DGH) является пионером разведки на газогидраты в Индии. Съемки, проведенные Директоратом в 1997 г. на Восточном побережье и в Андаманской глубоководной области, привели к обнаружению наиболее перспективных на газогидраты районов (рис. 1.2). Общие прогнозные ресурсы газа с учетом газогидратов на индийских шельфах оцениваются в 40–120 трлн м3. Особенно перспективными считаются Андаманские острова, где запасы гидратного и свободного газа оцениваются в 6 трлн м3.

Рис. 1.2. Карта перспективных по газогидратоносности районов шельфа Индии
Некоторые участки, находящиеся на глубинах 1 300–1 500 м, предназначены для бурения в первую очередь, не только для проверки наличия газогидратов, но и свободного газа.

Правительство Индии разработало национальную программу по газогидратам (НПГ), нацеленную на разведку и освоение ресурсов газогидратов в стране. Директорат – активный участник этой программы. Глава Директората является координатором технического комитета НПГ. Пересмотрены данные сейсмосъемок морской части Сауратры и всего западного и восточного побережья Индии в целях определения лучших районов для дальнейших исследований на газогидраты; были определены также две «модельные лабораторные зоны», по одной на каждое побережье. В рамках НПГ в этих зонах Национальным институтом океанографии собрана дополнительная информация, которая позволит подобрать места для бурения и получения керна. Имеется соглашение о международном сотрудничестве между Индией и консорциумом, объединяющим японские, американские, канадские и немецкие компании.

О возможном присутствии газогидратов в осадках оз. Байкал впервые заговорили в 1992 г. на основании результатов российско-американской глубинной сейсмической экспедиции, исследовавшей Южную и Центральную котловины озера. Сейсмический сигнал, известный как BSR (Bottom Simulating Reflector – кажущаяся отражающая граница), был зафиксирован в сейсмических профилях на глубине нескольких сотен метров осадочных пород и позволил предположить присутствие слоя газогидратов. Сигнал появляется в осадках на обширной территории севернее и южнее дельты р. Селенга. В 1998 г. газогидраты удалось найти на глубине 120 м в районе Южной котловины в ходе осуществления программы «Байкал-бурение» под руководством академика РАН М. Кузьмина. Находка подтвердила присутствие газогидратов в толще донных отложений оз. Байкал на глубине нескольких сотен метров (рис. 1. 3). Месторождение газогидратов в пресной воде является уникальным.

Х
Рис. 1.3. Газогидраты в осадках
озера Байкал
отя газогидраты были неоднократно обнаружены в областях выброса газов в океане, распределение и, в особенности, объем залежей, содержащихся в данных структурах, изучены еще недостаточно. Требуется проведение тщательных исследований участков выброса газов. Озеро Байкал очень хорошо подходит для выполнения этой работы, поскольку здесь можно проводить исследования летом с кораблей и зимой со льда, что позволяет выбрать наиболее подходящее место для экспериментов и подробно исследовать выбранный район.

Поддонные участки газогидратов в оз. Байкал – превосходная экспериментальная база для оценки количества и пространственного размещения газогидратов в структурах данного типа. Для проведения исследований необходимо получить образцы более глубоких осадочных слоев и применять комплексно несколько физических методов. Воды оз. Байкал считаются очень чистыми. Если внешнее загрязнение и существует, то оно контролируемо и имеет ограниченный характер. Сейчас стало ясно, что загрязнение озера метаном вызывается также естественными процессами. Необходимо оценить содержание метана в воде.

В США намерены в течение ближайшего десятилетия приступить к освоению нового, практически неисчерпаемого источника энергии – гидратов метана. Для этого в Мексиканский залив направляется исследовательский корабль, оснащенный буровым оборудованием, который должен произвести предварительную геологическую разведку. В ходе экспедиции предполагается собрать образцы из двух крупнейших залежей гидратов в регионе. В дальнейшем учёные будут проводить эксперименты, чтобы разработать технологию извлечения метана из кристаллов и транспортировки его на поверхность.

Многие страны, ищущие альтернативные источники ископаемого топлива, инвестируют в исследования газогидратов миллионы долларов. Кроме США, активные работы в этой области ведут Япония, Индия и Корея. Добывать газогидраты легче на суше, чем на дне океана. Еще в 2003 г. группа ученых и представителей нефтяных компаний из Канады, Японии, Индии, Германии и США доказала возможность их добычи из вечной мерзлоты на севере Канады. Аналогичные эксперименты проводятся на Аляске.

Свойства природного газа в определенных условиях образовывать твердые соединения активно используются в сфере новых технологий. Норвежские исследователи, например, разработали технологию преобразования природного газа в газогидрат, позволяющую транспортировать его без использования трубопроводов и хранить в наземных хранилищах при нормальном давлении (газ при этом преобразуют в замороженный гидрат и смешивают с охлажденной нефтью до консистенции жидкой глины). Выход на коммерческий уровень завода по переработке природного газа в газонефтяную смесь планируется уже в ближайшие годы. Предлагается также использовать газовые гидраты как химическое сырье для опреснения морской воды и разделения газовых смесей.

Несмотря на привлекательность использования газогидратов в качестве топлива, разработка новых месторождений может привести к ряду негативных последствий. Неизбежное выделение метана из ГГЗ в атмосферу усилит парниковый эффект. Проходка нефтяных и газовых скважин через гидратсодержащие слои под морским дном может вызвать оттаивание гидратов и деформации скважин, что повышает риск аварийных ситуаций на платформах. Строительство и эксплуатация глубоководных добывающих платформ в районах распространения гидратсодержащих слоев, где имеется уклон морского дна, чреваты образованием подводных оползней, которые могут уничтожить платформу.

В настоящее время во многих странах уделяется большое внимание изучению природных газовых гидратов – и как перспективных источников газа, и как фактора, осложняющего морскую добычу нефти и газа. При наличии в России значительных запасов «традиционного» газа поиск нетрадиционных энергоносителей и разработка методов их освоения могут показаться неактуальными. Однако начало разработки газогидратных месторождений может стать и началом нового этапа передела мирового газового рынка, в результате которого позиции России окажутся заметно ослабленными.

Таким образом, можно сделать следующие выводы:

  • газовые гидраты являются единственным не разрабатываемым источником природного газа на Земле, который может составить реальную конкуренцию традиционным месторождениям. Значительные потенциальные ресурсы газа в гидратных залежах надолго обеспечат человечество высококачественным энергетическим сырьем;

  • освоение газогидратных месторождений требует разработки новых, гораздо более эффективных по сравнению с существующими технологий разведки, добычи, транспортировки и хранения газа, которые смогут применяться и на традиционных газовых месторождениях, в том числе на тех, отработка которых сейчас нерентабельна;

  • добыча газа из гидратных залежей способна очень быстро изменить ситуацию на газовом рынке, что может повлиять на экспортные возможности России.
1   2   3   4   5   6   7   8   9   ...   23

Похожие:

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconДокументы, регламент
Назначение ооп бакалавриата, реализуемой вузом по направлению 131000 «Нефтегазовое дело» и профилю подготовки «Бурение нефтяных и...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconМетодическое пособие М. С. Голубева, А. В. Шибнев, А. В. Осташов,...
Для бакалавров направлений 131000 «Нефтегазовое дело» профиля подготовки 131000. 05 «Эксплуатация и обслуживание объектов транспорта...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconУпражнения для студентов направления подготовки
Учебно-методическое пособие предназначено для закрепления теоретических знаний, полученных студентами во время лекционных занятий...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconИнструкция методическая (временная) Порядок выполнения выпускной...
«Российский государственный университет нефти и газа (национальный исследовательский университет) имени И. М. Губкина»

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconМетодические рекомендации к написанию курсовых, выпускных квалификационных...
...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconМетодическое пособие предназначено для бакалавров III курса института...
Методическое пособие предназначено для бакалавров III курса института геологии и нефтегазовых технологий кфу по направлению 020700....

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconКонспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»
Конспект лекций по курсу «Делопроизводство» составлен на основе базовой программы «Делопроизводство и документационное обеспечение...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconМетодические указания по выполнению бакалаврской выпускной квалификационной...
Методические указания предназначены для студентов экономического факультета по направлению подготовки 38. 03. 01 «Экономика» по профилю...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconМетодические указания по подготовке и защите выпускной квалификационной...
Для студентов, обучающихся по направлению 080100. 62 «Экономика», профиль «Финансы и кредит» (программа подготовки бакалавра). —...

Конспект Лекционных занятий по курсу: Основы разработки шельфовых нефтегазовых месторождений для студентов 131000 бакалаврской подготовки по направлению «Нефтегазовое дело» iconКафедра социологии и культурологии
Методическое руководство к проведению лекционных и семинарских занятий по курсу

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск