Строение атома


НазваниеСтроение атома
страница2/6
ТипДокументы
filling-form.ru > Туризм > Документы
1   2   3   4   5   6

Принципы заполнения орбиталей


Принцип Паули. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами).

Правило Клечковского (принцип наименьшей энергии). В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной. Чем меньше сумма (n + l), тем меньше энергия орбитали. При заданном значении (n + l) наименьшую энергию имеет орбиталь с меньшим n. Энергия орбиталей возрастает в ряду:

1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d  4f < 6p < 7s.

Правило Хунда. Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.

Полная электронная формула элемента


Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

Главное квантовое число n минимально;

Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально);

Заполнение происходит так, чтобы (n + l) было минимально (правило Клечковского);

В пределах одного подуровня электроны располагаются таким образом, чтобы их суммарный спин был максимален, т.е. содержал наибольшее число неспаренных электронов (правило Хунда).

При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.

Полная электронная формула элемента


Пример.

Цезий (Сs) находится в 6 периоде, его 55 электронов (порядковый номер 55) распределены по 6 энергетическим уровням и их подуровням. Cоблюдая последовательность заполнения электронами орбиталей получим:

55Cs 1s2 2s2 2p6 3s2 3p6 4s2 4p6 4d10 5s2 5p6 5d10 6s1


1.1 Межатомное взаимодействие.





Рис.1. Зависимость сил взаимодействия между атомами (а) и энергии потенциального взаимодействия (б) от расстояния между атомами.
Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов.

Между двумя атомами действует сила притяжения. Сила притяжения по природе является кулоновской, следовательно, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2. Складывая силы притяжения и отталкивания, получаем результирующую силу взаимодействия двух атомов (рис 1 а). При расстоянии между атомами, равном rО силы притяжения и отталкивания взаимно компенсируют друг друга, результирующая сила взаимодействия равна нулю, и это расстояние является наиболее устойчивым.

Оценим энергию потенциального взаимодействия двух атомов как работу, с обратным знаком, по перемещению иона из бесконечности в данную точку. Геометрическое интегрирование дает зависимость, показанную на рисунке 1 б.
Из рисунка 1 б видно, что при минимальной энергии потенциального взаимодействия расстояние между соседними ионами равно rО. Увеличение энергии системы двух атомов (например, за счет роста тепловой энергии) ведет к появлению возможности взаимного смещения атомов относительно друг друга, причем с ростом энергии системы амплитуда колебаний возрастает. Другой интересной особенностью влияния температуры на свойства материалов является термическое расширение. Как видно из рисунка 1 б, кривая потенциального взаимодействия (или потенциальная кривая) асимметрична, поэтому при росте температуры среднее расстояние между атомами увеличивается, и линейные размеры тел увеличиваются. Изменение линейных размеров тела при нагреве описывается коэффициентом теплового расширения: aТ = (1/L)(dL/dT). Как видно из рис. 2б) коэффициент теплового расширения снижается при увеличении глубины потенциальной ямы.

В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции (рис. 2). При минимуме энергии системы расстояния между атомами одинаковы и равны r0. Вдоль любого направления расстояния будут равны r0, хотя эти расстояния по разным направлениям будут разными. Расстояние между атомами вдоль какого-либо направления принято обозначать а.

Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом.




Рис. 2. Зависимость энергии потенциального взаимодействия (Wp) от расстояния между атомами (x) для случая взаимодействия множества атомов.
Увеличение глубины потенциальной ямы ведет к росту температуры плавления и температуры испарения вещества. Вместе с тем, увеличение глубины потенциальной ямы ведет к уменьшению коэффициента теплового расширения: αТ = (1/L)(dL/dT). Таким образом, вещества с большей температурой плавления, как правило, имеют меньший коэффициент термического расширения.

При воздействии на тело силовых полей (электрического, механического, магнитного) частицы тела смещаются из равновесных положений. При этом могут реализовываться три случая.

1. Под действием поля ни одна из частиц не переходит через потенциальные барьеры. При исчезновении поля частицы возвращаются в исходные положения. В этом случае мы имеем дело с упругими безгистерезисными процессами: упругой деформацией, упругой поляризацией и так далее. Чем "круче" стенки потенциальной ямы, тем труднее осуществляется упругий бесгистерезисный процесс, в частности, растет модуль упругости материала.

2. Под действием поля некоторые слабо связанные частицы перебрасываются из одного положения в другое. После снятия внешнего воздействия под влиянием теплового движения или внутренних напряжений устанавливается состояние, статистически эквивалентное исходному. Этот случай реализуется при близости величины некоторых потенциальных барьеров со средней энергией частиц. Такие процессы называются упругогистерезисными (типичный пример - "неупругость" пружин) и характеризуются замкнутыми кривыми, называемыми циклами гистерезиса.

3. Если внешнее поле перемещает частицы через потенциальные барьеры, достаточно высокие по сравнению с тепловой энергией материала, то при снятии внешнего воздействия частицы в исходные положения не возвращаются, появляется остаточный эффект (пластическая деформация металлов, получение постоянных магнитов, электретов и т.д.).

Подводя итог сказанному выше, следует отметить, что увеличение глубины потенциальной ямы ведет к росту напряжения течения при пластической деформации, увеличению модуля упругости, повышению температур плавления и испарения, к снижению коэффициента теплового расширения. Таким образом, зная одни свойства материала, можно прогнозировать другие свойства.

1   2   3   4   5   6

Похожие:

Строение атома iconЛ1: Строение атома и периодический закон Д. И. Менделеева. Электронная структура атома
Химия – наука, изучающая вещества, их строение, свойства и превращения. Превращения одних веществ в другие вещества называются химическими...

Строение атома iconЕ. А. Коновалова С. М. Чигинцев Строение атома
Методические указания утверждены на заседании кафедры естественнонаучных дисциплин от 17. 10. 2011 (протокол №2)

Строение атома iconЛекция № строение атома
Энергия излучается и поглощается не непрерывно, а отдельными порциями – квантами. Энергия кванта e = hν, где h = 6,62·10-34 Дж·с...

Строение атома iconВопросы к экзамену I семестр
Эйнштейном. Фотоны. Спектры атомов. Теория атома водорода по Бору. Постулаты Бора. Объяснение спектра атома водорода. Внутренние...

Строение атома iconУчебное пособие рекомендуется для самоподготовки студентов к практическим...
Учебное пособие разработано кандидатом технических наук, доцентом кафедры общей и неорганической химии И. В. Рыбальченко

Строение атома iconСтроение атома и периодическая система элементов Д. И. Менделеева...
Максимальное число электронов в каждой из оболочек, в соответствии со следствием из принципа Паули, равно 2n2, например, сформированная...

Строение атома iconТемы для самостоятельной подготовки. Строение электронных оболочек атомов элементов
Электроны различаются своей энергией, чем дальше от ядра расположены электроны тем большим запасом энергии они обладают. Всегда в...

Строение атома iconСтроение атома и периодическая система элементов
Ядро составляют нейтроны и протоны. В химии не изучают ядра атомов, но, тем не менее, ниже мы рассмотрим некоторые характеристики...

Строение атома icon5. 1 Развитие представлений о сложной структуре атома
Аристотеля. Аристотель и Платон (384322 гг до н э.) полагали, что природа состоит из четырех начал (элементов): огня, земли, воздуха...

Строение атома iconУрок Тема занятия Железо и его соединения
Научатся на основе строения атома прослеживать взаимосвязь атома железа и его свойств и свойств его соединения. Узнают важнейшие...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск