Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения


НазваниеМетодические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения
страница22/28
ТипМетодические указания
1   ...   18   19   20   21   22   23   24   25   ...   28

ВАРИАНТ №2

TEXT 1

We have mentioned that architecture is a science of building. On one hand, coming of a building science also marked a major change in the role of an architect. The response of the architect was to develop a new role of licensed professional on the model of licensed professions such as law and medicine. It meant a bewildering range of new building types. On the other hand, with coming of a building science, there was a farther division of labor in the design process. Some new disciplines appeared to teach engineers and architects. One of them was structural engineering as a separate discipline specializing in the application.

We know that for building an architect and an engineer are needed. One of the first buildings for which an architect and an engineer were separate persons was the Granary (1811) in Paris. The building design professions were founded, including the Institute of Civil Engineers (1818) and the Royal Institute of British Architects (1834), both in London, and the American Institute of Architects (1857). Official government licensing of architects and engineers was not realized until beginning with the Illinois Architects Act of 1897. With the rise of professionalism was the development of government regulation, which took the form of detailed municipal and nation a building codes specifying both prescriptive and performance requirements for buildings.

TEXT 2

Engineering is a complex discipline, including a lot of fields. One of them is an architectural engineering. It is a discipline that deals with the technological aspects of buildings. They are the properties and behavior of building materials and their components, foundation design, structural analysis and design, construction management, and building operation. Besides architectural engineering deals with environmental system analysis and design. Every engineer knows an environmental system, which may account for 45—70% of a building's cost, includes heating, ventilating and air conditioning, illumination, building power system, plumbing and piping, storm drainage, building communications, acoustic, vertical and horizontal transportation, fire protection, alternate energy sources, heat recovery, and energy conservation. In addition, it is necessary to help protect everybody from unnecessary risk. That's why architectural engineers must know and be familiar with the various building codes, plumbing, electrical and mechanical codes, and the Life Safety Code. The latter code is designed to require planning and construction techniques in buildings which will minimize possible hazards to the occupants.

Text 3

One of the ancient human activities is building construction. It began with a purely functional need for a controlled environment to moderate the effects of climate. Human shelters were constructed to adapt human beings to a wide variety of climates and become a global species. But temporary structures were used only a few days or months. Over time were they evolved into such a highly refined form as the igloo. After adventing agriculture, people began to stay in one place for long periods. That's why more durable structures began to appear. The first human shelters were very simple. The first shelters were dwellings. But later they were used for other functions, such as food storage and ceremony. Some structures began to have symbolic as well as functional value, marking the beginning of the distinction between architecture and building.

The present state of building construction is complex. There is a wide range of products and systems which are aimed primarily at groups of building types. We know about a great role of the design process for buildings. It draws upon research establishments that study material properties and performance, code officials. Last ones adopt and enforce safety standards and design professionals who determine user's needs and design a building to meet those needs. It proves that the design process for buildings is highly organized. The construction progress is also highly organized. It includes the manufacturers of building products and systems. On the building site craftsmen assemble themselves. A work of the craftsmen is employed and coordinated by contractors. There are also consultants who specialize in such aspects as construction management, quality control and insurance. We must mention about complexity and measure of mastery of natural forces, which can produce a widely varied built environment to serve the needs of society. In conclusion, modern building construction is a significant part of an industrial culture.

ВАРИАНТ№ 3

Text 1

We have mentioned about some problems connected with building. One of them is a foundation. Architects and engineers are aware of the problems involved in laying building's foundations. They do not always realize to what extent the earth can be pressed down by the weight of a building. Too little allowance has sometimes been made for the possibility of a heavy structure's sinking unevenly. There are a lot of examples of foundations' problems. One of them is the Leaning Tower of Pisa. Why did the Leaning Tower of Pisa lean? The answer is that its foundations were not soundly laid. Though the Leaning Tower is 14 feet out of the perpendicular, it has never toppled. But there is a way out. As the building began to lean over, the builders altered the design of the tipper stories to balance it. At the same time as one side of it sank into the ground, the earth beneath was compressed until it became dense enough to prevent further movement.

That's why a foundation engineer has a lot of work. But in a tall modern structure the load may be very heavy indeed. In this way the foundation engineer has an extremely important job to do. To begin with, he must have thorough understanding of soil mechanics, which entails a scientific study of the ground to see what load it can be without dangerous movement. WE know that trial pits, holes can be. So the engineer must collect undisturbed samples of earth from various depths. By examining this, the engineer can forecast the probable shifts in the earth during and after building, according to the sort of the foundation he designs. Thus he comes to the most important decision of all in the building's construction. He decides whether the earth is a type that can best support each column on a separate solid block, or whether he must aim at lightness.

It is important for the foundation engineer to know about different types of the ground. If it is a firm ground at great depth, the foundation engineer may use piles. These are solid shafts made either by driving reinforced, concrete deep into the ground, or by boring holes in the earth and pouring in the concrete. Each pile supports its load in one, or two ways. It may serve as a column with its foot driven into solid еаrth. At the same time it may stand firm because friction along its sides "grips" the column and prevents it from sinking.

But it may be a question of building's floating. In this way the foundations take the form of a vast, hollow concrete box. This box is divided into chambers. These ones will be house heating and ventilating plants as well as provide garage and storage space for the building.

The situations may be different. There are no problems at all or few of them. It can be if the earth is stable. Buildings stand on hard rock' like granite or ironstone. For them neither piles йог need flotation be used. It is the best time for those foundation engineers whose buildings stand on the foundations possessing few problems.

Text 2

A very important part of any structure is a wall. Walls may be constructed in different forms. The walls include windows and doors, heads and sills, stanchion casings and inner lining panels. The doors and windows provide for controlled passage of environmental factors and people through the, wall line. The aluminium heads, sills and windows are fixed from inside the building. After this, the 900 mm and 1.800 mm wide exterior doors are installed. These doors are aluminum framed and pre-glazed or hardwood framed and glazing is done on site. All walls are also designed to provide resistance to passage of fire for some defined period of time, such as a one-hour wall. The function of resisting fire fulfills stanchions. The stanchions are enclosed in casings.

That's why any engineer most know all methods of constructing walls for buildings. Of cause Walls are made of various materials to serve several functions. Тле walls are divided into interior and exterior walls. The exterior walls protect the building interior from external environmental effects such as heat and cold,, sunlight, ultraviolet radiation, rain, sound, while containing desirable interior environmental conditions. The exterior walls are made up of brick cladding, wall planks. The wall planks are designed to be weatherproof and to support the outer cladding. The wall planks and floor units are fixed only while the steel frame is being erected. The concrete floor units are capable of carrying a load of up to 5 kN/sq m. Finally, the internal sills and lining panels are installed. The lining panels are capable of being removed to give access to the services. The lining panels and the internal sills are cavity for heating and electrical services.

ВАРИАНТ № 4

Text 1

We have mentioned about some methods of constructing walls for buildings. All walls are made of different materials. For example, walls are made of brick. The brick walls are laid up with a space between separate vertical parallel walls and connected with occasional cross bricks or metal ties. This method provides «cavity walls.»

In areas of possible earthquake damage the «cavity» in brick work and the open cells in concrete units is reinforced with standard reinforcing rods and fully grouted with a soupy mixture of concrete. Normal spacing for vertical reinforcement is #4 at 24" with #4 at 48" horizontal fully, encased in grout up to 10" high. Reinforcement requirements should be shown on the drawings for other situations.

But it is a special part of building called masonry. Masonry is installed with cement mortar at bed and end joints, usually 3/8" or 1/2" thick. The masonry includes a stone or brick work and concrete units. The concrete units are laid in a similar manner, but obviously there is no open space between inner and outer shells. Each unit has an open core. The concrete units are used primarily as foundation, exterior or fire-separation walls. The brick and concrete units are manufactured in standard sizes. Though a stone may be any size, thickness, quality or color.

Text 2

Besides masonry, a brick work, any engineer must know about heating and ventilation. They are two branches of engineering which are very closely connected. Both they are treated as a dual subject. Heating is to prevent too rapid loss of heat from the body. The rate of heat lost from the body is controlled. Some old concepts of heating have been gradually changed since engineers obtained more precise knowledge about how the body loses heat. Insufficient attention was paid formerly to loss by radiation, which is the transmission of energy in the form of waves from a body to surrounding bodies at a temperature. The human being also loses heat by conduction (through his clothes) and convection, the latter by air currents not only past his skin or outside clothing surface but also by evaporation of moisture from his skin (respiration).

The determination of the capacity or size of the various components of the heating system is based on the fundamental concept that heat supplied to a space equals heat lost from the space. The most widely used system of heating is the central heating.

There are two most common systems of heating: hot water and steam. There the fuel is burned in one place, from which steam, hot water or warm air is distributed to adjacent and remote spaces to be heated. Both systems are widely used nowadays. A hot-water system consists of the boilers and a system of pipes connected to radiators suitably located in the rooms. The steel or copper pipes give hot water to radiators or convectors which give up their heat to the rooms. Then cooled water is returned to the boiler for reheating. As for steam systems, steam is usually generated. The steam is led to the radiators through or, by means of steel or copper pipes. The steam gives up its heat to the radiators and the radiators to the room. After this cooling of the steam condenses to water. The condensate is returned to the boiler by gravity or by a pump. The air valve on each radiator is necessary for air to escape. Otherwise it would prevent steam from entering the radiator.

Recent efforts have resulted to completely conceal heating equipment in an arrangement. Hot water, steam, air, or electricity are circulated through distribution units embedded in the building construction. Panel heating is a method of introducing heat to rooms in which emitting surfaces are usually completely concealed in the floor, walls or ceiling. The heat is disseminated from such panels partly by radiation and partly by convection. Ceiling panels release the largest proportion of heat by radiation and floor panels release the smallest one. The proportion of heat disseminated by radiation and convection is also dependent to some extent upon panel-surface temperatures. Other factors must be considered by an engineer. They are a type of occupancy, furniture or equipment location, large glass areas, heat-storing capacity of building construction, room height, and possible change of wall partitions, climate, exposure, cost. Sometimes fuel is used for heating. They include coal, oil, manufactured and natural gas, wood. Nowadays gas fuel is being used on an increasing level.

But to do comfortable atmosphere is to use heating and ventilation together, Heating and ventilation are concerned with providing a required atmospheric environment within a space to produce a desired temperature for maintaining comfort, health or efficiency of the beings. Nowadays air-conditioning is closely related to both heating and ventilation.

ВАРИАНТ №5

Text 1

One of the building materials used in a construction is a brick. The production of a brick was industrialized in the 19th century. Earlier it was a process of hand-molding. Later it was superseded by «pressed» bricks. It was a mass production by a mechanical extrusion process. In this way clay was squeezed by "pressed" through a rectangular die as a continuous column and sliced to size by a wire cutter. Periodically fired kilns were used. Bricks were moved slowly on a conveyor belt. New methods considerably reduced the cost of a brick. That's why it became one of the constituent building materials of the age.

Rapid development of timber technology was in the 19th century in North America. It was explained large softwood fir's forests and pine trees. There they were used as industrial methods. Steam- and water-powered sawmills began producing standard-dimension timbers in the 1820s. The production of cheap machine made nails in the 1830s. It provided other necessary ingredient — a balloon frame. That made possible a major innovation in building construction. The first example was a warehouse erected in Chicago in 1832 by George W. Snow. There was a great demand for small buildings of all types settled on North American continent. Light timber frame provided a quick, flexible, inexpensive solution to this problem. Heavy timbers and complex joinery were abandoned in the balloon frame system. The building walls were framed with 5 x 10-centimetre (2 x4-inch) vertical members. They were placed at 40 centimeters (16 inches) from the centre. This supplied a roof and floor joists, usually 5x25 centimeters (2x10 inches) and placed 40 centimeters (16 inches) apart and were capable of spanning up to six meters (20 feet).
1   ...   18   19   20   21   22   23   24   25   ...   28

Похожие:

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМетодические указания к контрольным заданиям для студентов заочной...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМетодические указания по выполнению контрольной работы №2 Для самостоятельной...
Деловой иностранный язык. Методические указания по выполнению контрольных работ для студентов 2 курса заочной формы обучения, обучающихся...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconПрограмма и методические указания по практике для студентов всех форм обучения
«27» июня 2007 г., и в соответствии с рабочими учебными планами специальности 030501 – Юриспруденция, утвержденными Ректором спбгиэу...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconПрограмма и методические указания для студентов всех форм обучения
Учебная практика проводится на 2-м курсе для студентов очной формы обучения и студентов бакалавров, на 1-м курсе для студентов очно-заочной...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМетодические указания ен. 01 Математика методические указания и контрольные задания по
Методические указания предназначены для студентов заочной формы обучения по специальности Техническое обслуживание и ремонт автомобильного...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconФгбоу впо «ЧелГУ» Факультет управления Кафедра государственного и муниципального управления
Методические указания предназначены для студентов, бакалавров и магистрантов очной и заочной формы обучения всех направлений и профилей...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconФгбоу впо «ЧелГУ» Факультет управления Кафедра государственного и муниципального управления
Методические указания предназначены для студентов, бакалавров и магистрантов очной и заочной формы обучения всех направлений и профилей...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМетодические указания по выполнению контрольных работ для студентов...
Уголовно-процессуальные акты [Текст]: методические указания по выполнению контрольных работ для студентов заочной формы обучения...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМеждисциплинарный курс. 01. 01 Организация безналичных расчетов Методические...
ПМ. 01 Ведение расчетных операций, мдк. 01. 01 Организация безналичных расчетов, уп. Пм. 01 [Текст]: методические указания по выполнению...

Методические указания к контрольным заданиям для студентов агробиологических и агроинженерных направлений заочной формы обучения iconМетодические указания по практике для студентов дневного и заочного обучения Самара 2014
Методические указания по практике для студентов специальности «автомобильные дороги», дневной и заочной формы обучения / Составители:...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск