Решение уравнения Шредингера приводит в случае


Скачать 426.22 Kb.
НазваниеРешение уравнения Шредингера приводит в случае
страница1/5
ТипРешение
filling-form.ru > Туризм > Решение
  1   2   3   4   5




Лекция 13. Элементы квантовой физики атомов и молекул
13.1 Атом водорода. Квантование

Собственные значения энергии. Рассмотрим систему, состоящую из электрона е, который движется в кулоновском поле неподвижного ядра с зарядом Ze (водородоподобная система). Потенциальная энергия взаимодействия электрона с ядром в такой системе равна



(13.1)

где r — расстояние между электроном и ядром, которое в первом приближении будем считать точечным. Графически функция U(r) изображена жирной кривой на рис. 13.1 а. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает. Уравнение Шрёдингера в этом случае имеет вид



(13.2)

Поле (13.1), в котором движется электрон, является центрально-симметричным, т. е. зависит только от r. Поэтому решение уравнения (13.2) наиболее целесообразно проводить в сферической системе координат r,θ,φ, где оператор Лапласа имеет следующий вид:



(13.3)

Не будем воспроизводить здесь этапы решения уравнения (13.2), поскольку оно слишком громоздко. Остановимся лишь на сути процесса решения и на анализе окончательных результатов. Решение уравнения (13.2) проводят методом разделения переменных с учетом естественных требований, налагаемых на ψ-функцию: она должна быть однозначной, конечной, непрерывной и гладкой. В теории дифференциальных уравнений доказывается, что решения уравнения (13.2) являются непрерывными, однозначными и конечными в следующих случаях:

  1. при любых положительных непрерывных значениях энергии;

  2. при дискретных отрицательных значениях энергии.

Первый случай соответствует свободному электрону (заштрихованная область на рис. 13.1 б), второй — получаемым из уравнения Шредингера собственным значениям энергии

n = 1, 2, 3, …

(13.4)


Случай (Е < 0) соответствует связанным состояниям электрона в атоме.

Решение уравнения Шредингера приводит в случае Е < 0 к формуле (13.4) для энергетических уровней без использования каких-либо дополнительных постулатов (в отличие от первоначальной теории Бора). Кроме того, совпадение с формулой Бора означает, что мы пришли к той же самой системе энергетических уровней, как в теории Бора. Это же относится и к частотам излучения при переходах между уровнями.

Таким образом, решение уравнения Шредингера приводит для атома водорода к появлению дискретных энергетических уровней Е1, Е2, ..., Еп, показанных на рис. 13.1 б в виде горизонтальных прямых.





а) б)

Рис. 13.1 . а - потенциальная энергия U(r) и б - собственные значения энергии Е электрона в атоме водорода.
Самый нижний уровень Е1, отвечающий минимальной возможной энергии, — основной, все остальные п > Е1 , п = 2, 3, ...) — возбужденные. При Е < 0 движение электрона является связанным — он находится внутри гиперболической потенциальной ямы. Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п → ∞ Е0.

При Е > 0 движение электрона является свободным; область непрерывного спектра Е > 0 (заштрихована на рис. 13.1 б) соответствует ионизированному атому.

Различие в интерпретации с теорией Бора относится только к состояниям электрона: в теории Бора это движение по стационарным орбитам, здесь же орбиты теряют физический смысл, их место занимают ψ-функции.

Квантовые числа и кратность вырождения. Собственные функции уравнения (13.2), т. е. ψ-функции, содержат, как выяснилось, три целочисленных параметра — п, ℓ, т:

ψ = ψnm(r θ,φ),

(13.5)

где п называют главным квантовым числом (это то же п, что и в выражении для Еп). Параметры же и m — это орбитальное (азимутальное) и магнитное квантовые числа, определяющие по формулам (12.58) и (12.59) модуль момента импульса М и его проекцию Мг. В процессе решения выясняется, что решения, удовлетворяющие естественным условиям, получаются лишь при значениях , не превышающих (п – 1). Таким образом, при данном п квантовое число может принимать п значений:

= 0, 1, 2, …, n 1.

(13.6)

В свою очередь, при данном квантовое число т согласно (12.59) может принимать 2ℓ + 1 различных значений:

т = 0, ±1, ±2, ...,±

(13.7)

Энергия Еп электрона (13.4) зависит только от главного квантового числа п. Отсюда следует, что каждому собственному значению Еп (кроме случая п = 1) соответствует несколько собственных функций ψnm, отличающихся значениями квантовых чисел и т. Это означает, что электрон может иметь одно и то же значение энергии, находясь в нескольких различных состояниях. Например, энергией Е2 (п = 2) обладают четыре состояния: ψ200, ψ21-1, ψ210, ψ21+1.

Состояния с одинаковой энергией называют вырожденными, а число различных состояний с определенным значением энергии Еп - кратностью вырождения данного энергетического уровня. Кратность вырождения n-го уровня водородоподобной системы можно определить, учитывая число возможных значений и т. Каждому из п значений квантового числа соответствует 2ℓ + 1 значений т. Поэтому полное число N различных состояний для данного п равно

N = = 1 + 3 + 5 + ... + (2п - 1) = п2.

(13.8)

Как будет показано в дальнейшем, это число надо удвоить из-за наличия собственного момента (спина) у электрона. Таким образом, кратность вырождения n-го энергетического уровня

N = 2п2.

(13.9)

Описание состояния электрона. Поскольку в квантовой механике определяют лишь вероятность местонахождения электрона, то для наглядности применяют образ электронного облака. Плотность электронного облака в каждой точке пространства вокруг ядра пропорциональна плотности вероятности обнаружения электрона в этой точке, которая в свою очередь определяется квадратом модуля волновой функции. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число mориентацию электронного облака в пространстве.

В квантовой механике, по аналогии со спектроскопией, применяются условные обозначения для состояний с различными l, как указано ниже в (13.10).


Значения l

0 1 2 3 4 5 (13.10)

s p d f g h

(13.10)

Состояния
Принято говорить о s-состояниях (или s-электронах) для l = 0, p-состояниях (или p-электронах) для l = 1 и т. д. Главное квантовое число п указывают перед символом состояния с данным ℓ. Например, электрон, имеющий главное квантовое число п = 3 и ℓ = 2, обозначают символом 3d и т. д.

Распределение электронной плотности (радиальное и пространственное) для состояний электрона в атоме водорода при n = 1 и n = 2 показано на рис. 13.2 для s и p состояний.

Испускание и поглощение света происходит при переходах электрона с одного уровня на другой. В квантовой механике доказывается, что для азимутального квантового числа l имеется правило отбора

l = ± 1

(13.11)

Это означает, что возможны только такие переходы, при которых l изменяется на единицу. Это означает, что разрешенными являются переходы лишь между s- и р-состояниями, между р- и d-состояниями и т. д.. При этом главное квантовое число п может изменяться на любое целое число. С точки зрения квантовой теории правила отбора связаны с вероятностью перехода из одного квантового состояния в другое. Оказывается, вероятность переходов, не разрешенных правилами отбора, практически равна нулю.


а) б)



в) г)

Рис. 13.2. Радиальное (красные кривые вверху каждого рисунка) и пространственное (жёлтые области внизу каждого рисунка) распределение вероятности |ψ|2 (электронное облако) для электронных состояний: а) 1s m = 0, б) 2s m = 0, в) 2p m = 0, г) 2p m = 1.
Правило (13.11 ) обусловлено тем, что фотон обладает собственным моментом импульса (спином), равным примерно ћ. При испускании фотон уносит из атома этот момент, а при поглощении привносит, так что правило отбора (13.11) есть просто следствие закона сохранения момента импульса.

Переходы, разрешенные правилом (13.11), показаны на рис. 13.3. Пользуясь условными обозначениями состояний электрона, переходы, приводящие к возникновению серии Лаймана, можно написать в виде

np 1s (n = 2, 3, …);

серии Бальмера соответствуют переходы

np 2s, ns 2p, nd 2p (n = 3,4, …),

и т.д.

Переход электрона из основного состояния в возбужденное связан с увеличением энергии атома и может происходить только при сообщении атому энергии извне.

Это может быть осуществлено за счет теплового соударения атомов, или за счет столкновения атома с достаточно быстрым электроном, или, наконец, за счет поглощения атомом фотона. Так как поглощающий атом при нормальных условиях находится в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1s—> пр (п = 2, 3, ...), что находится в полном согласии с опытом.

Рис. 13.3.
Собственные функции уравнения (13.2) представляют собой произведение двух функций, одна из которых зависит только от r, а другая — только от углов θ и φ:

Ψnm (r,θ,φ) = Rn(r)·Υm(θ,φ),

(13.12)

где первый сомножитель вещественный и зависит от квантовых чисел п и ℓ, второй же — комплексный и зависит от и т. Функция Υm(θ,φ) является собственной функцией оператора квадрата момента импульса . Для s-состояний (ℓ = 0) эта функция является константой, так что ψ-функция вида ψn00 зависит только от r. Вообще же

Υm(θ,φ) = Θ |m|(θ) eimφ .

(13.13)

Распределение плотности вероятности. Плотность вероятности местонахождения электрона дается квадратом модуля волновой функции |ψ|2 или ψ ψ *. Ограничимся для простоты рассмотрением основного состояния электрона 1s атома водорода, которое является сферически-симметричным, т. е. его ψ -функция зависит только от r:

Ψ1 s ~ e -α r,

(13.14)

где α = 1/r1, r1 – боровский радиус.

Вероятность нахождения электрона в объеме dV равна |ψ|2dV. Возьмем в качестве элементарного объема dV сферический слой толщиной dr и радиусом r: dV = r2dr. Тогда вероятность dP нахождения ls-электрона в этом слое

dP=Ar2|ψ|2dr,

(13.15)

где А — нормировочный коэффициент. Отсюда плотность вероятности ρ(r) = dP/dr, т. е. вероятность местонахождения электрона в сферическом слое единичной толщины вблизи радиуса r есть

ρ(r) = dP/dr = Ar2e- 2 α r ~ r2е- 2α r.

(13.16)

Эту плотность вероятности не следует смешивать с плотностью вероятности dP/dV, отнесенной к единице объема вблизи точки с радиусом r и равной |ψ|2.

Видно, что (13.16) обращается в нуль при r → 0 и при r → ∞. Найдем значение r, при котором (13.16) достигает максимума. Для этого продифференцируем (13.16) по r и приравняем нулю полученное выражение (после сокращения на экспоненту). В результате получим наиболее вероятное расстояние электрона от ядра, равное боровскому радиусу:

rm = 1/α = r1

(13.17)

На рис. 13.4 изображены кривые распределения вероятности ρ(r) = r2|ψ|2 обнаружения электрона в атоме водорода на различных расстояниях от ядра в состояниях 1s и 2s. Как видно электрон в состоянии 1s (основное состояние атома водорода) может быть обнаружен на различных расстояниях от ядра. С наибольшей вероятностью его можно обнаружить на расстоянии r/r1 = 1, т.е. равном радиусу r1 первой боровской орбиты.

Вероятность обнаружения электрона в состоянии 2s максимальна на расстоянии r = 4r1 от ядра. В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро. Пространственная симметрия распределения вероятности для 1s и 2s состояний показана на рис. 13.2 а и 13.2 б, соответственно. С классической точки зрения s- состояния, для которых орбитальный момент электрона равен нулю (l =0), соответствует движению электрона вдоль радиуса, т.е. электрон при своем движении должен был бы пересекать область, занятую ядром. Это в классике невозможно. В квантовой же теории состояние с нулевым орбитальным моментом существует – это s-состояния электрона, в которых распределение «плотности» электронного облака сферически-симметрично.

Рис. 13.4.

Распределении электронного облака в других состояниях (p, d, …). уже не сферически-симметрично и в сильной степени зависит от угла θ. Вместе с тем, выяснилось, что при усреднении по углу θ остается зависимость ψ-функции только от r, и максимумы распределения в состояниях с = n – 1 (т. е. наиболее вероятные расстояния электрона от ядра) приходятся на соответствующие боровские орбиты.
  1   2   3   4   5

Похожие:

Решение уравнения Шредингера приводит в случае iconЛитература Чудновский А. Ф. Теплофизика почв. М.: Наука, 1976. Кулик...
Аллера-Лыкова в дифференциальной и разностной трактовках. Из полученной оценки для решения разностной задачи следует ее сходимость....

Решение уравнения Шредингера приводит в случае iconРешение алгебраических и трансцендентных уравнений
В практике вычислений приходится решать уравнения вида f(X) = 0, где f(X) определена на некотором конечном или бесконечном интервале...

Решение уравнения Шредингера приводит в случае iconПреодоление
Усиление России приводит к столкновению с Америкой, что приводит мир на грань глобальной катастрофы

Решение уравнения Шредингера приводит в случае iconРегистрационная карточка
Пример И. М. Лифшиц, Л. Н. Розенцвейг. О построении тензора Грина для основного уравнения теории упругости в случае неограниченной...

Решение уравнения Шредингера приводит в случае iconРешение комиссии прошу направить
Решение комиссии прошу направить (указать почтовый адрес, по которому необходимо направить решение (в случае, если заявитель не желает...

Решение уравнения Шредингера приводит в случае iconРешение о создании общества
Решение о создании общества (в случае, когда один учредитель) оригинал, подписанный всеми учредителями

Решение уравнения Шредингера приводит в случае iconВ межведомственную комиссию по делам несовершеннолетних и защите их прав Саратовской области
Решение комиссии прошу направить (указать почтовый адрес, по которому необходимо направить решение (в случае, если заявитель не желает...

Решение уравнения Шредингера приводит в случае iconМежведомственная комиссия по делам несовершеннолетних и защите их прав Республики Карелия
Решение комиссии прошу направить (указать почтовый адрес, по которому необходимо направить решение (в случае, если заявитель не желает...

Решение уравнения Шредингера приводит в случае iconРешение суда. Суд признал решение фонда законным. В данном случае...
См. Письмо Минфина от 15 февраля 2018 г. N 03-02-08/9589, постановление Конституционного Суда Российской Федерации от 08. 12. 2017...

Решение уравнения Шредингера приводит в случае iconШаповалов Александр Васильевич
Е. А. Левченко, А. Ю. Трифонов А. Ю., А. В. Шаповалов, “Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск