В юридической деятельности


НазваниеВ юридической деятельности
страница5/29
ТипРеферат
1   2   3   4   5   6   7   8   9   ...   29
Тема 3. Технические аспекты реализации информационных технологий

ОСНОВНЫЕ ВОПРОСЫ:

1. Эволюция и тенденции развития технического обеспечения компьютерных систем.

2. Внешние устройства персонального компьютера.

2.1 Системный блок.

2.2 Монитор.

2.3 Клавиатура.

2.4 Компьютерная мышь.

3. Внутренние устройства персонального компьютера.

3.1 Системная плата.

3.2 Компьютерная шина.

3.3 Процессор.

3.4 Внутренняя память.

3.5 Видеокарта.

3.6 Жесткий диск.

3.7 Оптические приводы.

1. Эволюция и тенденции развития технического обеспечения компьютерных систем

Анализируя раннюю историю вычислительной техники, некоторые зарубежные исследователи нередко в качестве древнего предшественника компьютера называют механическое счетное устройство абак. Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Римляне усовершенствовали абак (рис. 1), перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.
Абак или в дальнейшем счеты сохранились до эпохи Возрождения, а в видоизмененном виде, сначала как «дощатый счет» и как русские счеты – до наших дней. Абак удобно использовать для выполнения операций сложения и вычитания, умножение и деление выполнять при помощи абака гораздо сложнее.

Подход «от абака» свидетельствует о глубоком методическом заблуждении, поскольку абак не обладает свойством автоматического выполнения вычислений, а для компьютера оно определяющее.

В то же время хорошо знаком другой прибор, способный автоматически выполнять вычисления – часы. Независимо от принципа действия, все виды часов (песочные, водяные, механические, электрические, электронные и др.) обладают способностью генерировать через равные промежутки времени перемещения или сигналы и регистрировать возникающие при этом изменения, то есть выполнять автоматическое суммирование сигналов или перемещений.

В основе любого современного компьютера, как и в электронных часах, лежит тактовый генератор, вырабатывающий через равные интервалы времени электрические сигналы, которые используются для приведения в действие всех устройств компьютерной системы. Управление компьютером фактически сводится к управлению распределением сигналов между устройствами. Такое управление может производиться автоматически (в этом случае говорят о программном управлении) или вручную с помощью внешних органов управления – кнопок, переключателей, перемычек и т.п. (в ранних моделях). В современных компьютерах внешнее управление в значительной степени автоматизировано с помощью специальных аппаратно-логических интерфейсов, к которым подключаются устройства управления и ввода данных (клавиатура, мышь, джойстик и другие). В отличие от программного управления такое управление называют интерактивным.

Революцию в области механизации умножения и деления, и соответственно в области ИТ обработки информации, совершил шотландский математик Джон Непер. В 1617 году Джон Непер создал деревянную машину для умножения с использованием логарифмов (рис. 2).
Особенно интересно изобретение Непером счетной доски для умножения, деления, возведения в квадрат, извлечения квадратного корня в двоичной системе счисления. В 1622 году, используя принцип действия этого устройства, Вильям Оугтред разработал логарифмическую линейку, которая в 19-20 веках стала основным инструментом инженеров.

Первое в мире автоматическое устройство для выполнения операции сложения было создано на базе механических часов. В 1623 году его разработал Вильгельм Шикард, профессор кафедры восточных языков в университете Тьюбингена (Германия). Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, отправленном в 1623 г., он приводит рисунок машины (рис. 3) и рассказывает, что она устроена на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления.

В наши дни рабочая модель устройства была воспроизведена по чертежам и подтвердила свою работоспособность. Сам изобретатель в письмах называл машину «суммирующими часами».
В 1642 году французский механик Блез Паскаль (1623-1662) разработал более компактное суммирующее устройство (рис. 4), которое стало первым в мире механическим калькулятором, выпускавшимся серийно (главным образом для нужд парижских ростовщиков и менял).
В 1673 г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646-1716), создает счетную машину для сложения и умножения двенадцатиразрядных десятичных чисел (рис. 5). К зубчатым колесам он добавил ступенчатый валик, позволяющий осуществлять умножение и деление.
Первый коммерческий механический калькулятор был создан Чарльзом Томасом – в 1820 году. Она выполняла операции сложения, вычитания, умножения и деления.
На протяжении XVIII века, известного как эпоха Просвещения, появились новые, более совершенные модели, но принцип механического управления вычислительными операциями оставался тем же. Идея программирования вычислительных операций пришла из той же часовой промышленности. Старинные монастырские башенные часы были настроены так, чтобы в заданное время включать механизм, связанный с системой колоколов. Такое программирование было жестким – одна и та же операция выполнялась в одно и то же время. Идея гибкого программирования механических устройств с помощью перфорированной бумажной ленты впервые была реализована в 1804 году в ткацком станке Жаккарда, после чего оставался только один шаг до программного управления вычислительными операциями.

Этот шаг был сделан выдающимся английским математиками изобретателем Чарльзом Бэббиджем (1792-1871).

Именно профессора математики Кембриджского университета Чарльза Бэббиджа считают первым ученым предложившим использовать принцип программного управления для автоматического выполнения арифметических вычислений. Разочарованный большим количеством ошибок в вычислениях Королевского Астрономического Общества, Бэббидж пришел к мысли о необходимости автоматизации вычислений. Первая попытка реализации такой машины была предпринята Бэббиджем в 1822 г., когда он создал машину, предназначенную для решения дифференциальных уравнений, названную “разностной машиной”.

Работа модели основывалась на принципе, известном в математике как «метод конечных разностей». Аналитическая машина (так назвал ее Бэббидж) (рис.7) явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ, пять основных устройств: арифметическое, памяти, управления, ввода, вывода. Для арифметического устройства Ч. Бэббидж использовал зубчатые колеса, подобные тем, что использовались ранее. На них же Ч. Бэббидж намеревался построить устройство памяти из 1000 50-разрядных регистров (по 50 колес в каждом). Программа выполнения вычислений записывалась на перфокартах (пробивками), на них же записывались исходные данные и результаты вычислений. В число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Автоматическое выполнение программы вычислений обеспечивалось устройством управления. Время сложения двух 50-разрядных десятичных чисел составляло, по расчетам ученого, 1 с., умножения – 1 мин. Движение механических частей машины должен был осуществлять паровой двигатель. Большая, как локомотив, машина должна была автоматически выполнять вычисления и печатать результаты. Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815-1852), поразительно схожи с программами, составленными впоследствии для первых ЭВМ. Не случайно именем этой замечательной женщины назвали одну из первых систем программирования. Большая разностная машина так и не была построена до конца. В 1871 году Бэббидж изготовил опытный образец арифметического устройства («завода») аналитической машины и принтера. Технические трудности, с которыми пришлось встретиться при реализации, не позволили осуществить проект, поэтому Бэббидж не опубликовал проект полностью, а ограничился описанием его в своих лекциях, чертежах и рисунках.
Первым электронным компьютером (рис.8) можно назвать систему, созданную в 1942 году Джоном В. Атанасовым в колледже штата Айова. Эта машина была специализированной и предназначалась для решения задач математической физики.
В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Атанасов сформулировал, а в 1939 году опубликовал окончательный вариант своей концепции современной вычислительной машины.

Для военных целей требовались более совершенные вычислительные системы. В 1943 г американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX в – электромеханических реле – смог построить на одном из предприятий фирмы IBM такую машину под названием “Марк-1” (рис. 9). «Марк-1» имел в длину 15 метров и в высоту 2,5 метра, содержал 800 тысяч деталей, располагал 60 регистрами для констант, 72 запоминающими регистрами для сложения, центральным блоком умножения и деления, мог вычислять элементарные трансцендентные функции.
Еще раньше идеи Бэббиджа были переоткрыты немецким инженером Конрадом Цузе, который в 1941 г. построил аналогичную машину. К этому времени потребность в автоматизации вычислений (в том числе для военных нужд – баллистики, криптографии и т.д.) стала настолько велика, что над созданием машин типа построенных Эйкеном и Цузе одновременно работало несколько групп исследователей. Начиная с 1943 г., группа специалистов под руководством Джона Моучли и Преспера Экерта в США начала конструировать подобную машину уже на основе электронных ламп, а не реле. Их машина, названная ENIAC, работала в тысячу раз быстрее, чем Марк-1. ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9x15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток – управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп. Чтобы упростить процесс задания программ, Моучли и Экерт стали конструировав новую машину, которая могла бы хранить программу в своей памяти. В 1945 г к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.

Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-либо другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”.

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти – число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей. Более того, команды одной программы могут быть получены как результаты исполнения другой программы.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представлено ламповыми машинами.

В 1946 г. фон Нейман начинает разработку новой машины, и в 1949 г. была построена электронная машина по обработке дискретных переменных «EDVAC» (рис. 10), которая впоследствии была признана первым компьютером.
Машина на электронных лампах работала значительно быстрее, чем на электромеханических реле, но сами электронные лампы были ненадежны. Они часто выходили из строя. Для их замены в 1947 году Джон Бардин, Уолтер Браттейн и Уильям Шокли предложили использовать изобретенные ими переключающие полупроводниковые элементы – транзисторы.

Совершенствование первых образцов вычислительных машин привело в 1951 году к созданию компьютера UNIVAC (рис. 11), предназначенного для коммерческого использования. Он стал первым серийно выпускаемым компьютером.
В 1950-х годах было создано второе поколение компьютеров, выполненных на транзисторах. В результате быстродействие машин возросло в 10 раз, а размеры и вес значительно уменьшились. Стали применять запоминающие устройства на магнитных ферритовых сердечниках, способные хранить информацию неограниченное время даже при отключении компьютеров. Их разработал Джой Форрестер в 1951-1953 годах. Большие объемы информации хранились на внешнем носителе, например на магнитной ленте или на магнитном барабане.

Рейнольд Б. Джонсон, сотрудник IBM, разработал устройство IBM 305 RAMAC (контрольно-считывающее устройство по методу случайного доступа) (рис. 12).

Устройство состояло из 50 вращающихся магнитных дисков диаметром 60 см, которые были расположены один над другим. Механизм считывания и записи перемещался между дисками, обеспечивая более быстрый доступ к данным, чем магнитная лента. После того как возможности устройства были продемонстрированы на Всемирной ярмарке в Брюсселе в 1958-м, от носителей на магнитных лентах отказались.
В 1959 году Д. Килби, Д. Херни, К. Леховец и Р. Нойс изобрели интегральные микросхемы (чипы), ставшие элементной базой ЭВМ третьего поколения, в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволило сократить пути прохождения тока при переключениях. Скорость вычислений при этом увеличилась в десятки раз. Существенно уменьшились и габариты машин. Появление чипа позволило создать третье поколение компьютеров. И в 1964 году фирма IBM начинает выпуск компьютеров IBM-360 (рис. 13) на интегральных микросхемах.
Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор или чип. В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100-200 обычных интегральных схем. Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда.

В 1965 году Дуглас Энгелбарт создал первую «мышь» (рис. 14) – компьютерный ручной манипулятор. Впервые она была применена в персональном компьютере Apple фирмы Macintosh, выпущенном позднее, в 1976 году.
В 1967 году компания IBM начала производить дискету для компьютера, изобретенную Йосиро Накамацу – съемный гибкий магнитный диск («флоппи-диск») для постоянного хранения информации. Первоначально дискета была гибкой, имела диаметр 8 дюймов и емкость 80 Кбайт, затем – 5 дюймов. Современная дискета емкостью 1,44 Мбайта, впервые выпущенная фирмой Sony в 1982 году, заключена в жесткий пластмассовый корпус и имеет диаметр 3,5 дюйма.

В 1969 году в США началось создание оборонной компьютерной сети – прародителя современной всемирной сети Internet.

В 1970-е годы были разработаны матричные принтеры, предназначенные для распечатки информации на выходе из компьютеров.

К середине 70-х годов положение на компьютерном рынке резко и непредвиденно стало изменяться. Четко выделились две концепции развития ЭВМ. Воплощением первой концепции стали суперкомпьютеры, а второй – персональные ЭВМ. Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» (рис. 15) и «Крей-2» (рис. 16), а также советские модели «Эльбрус-1» (рис. 17) и «Эльбрус-2» (рис. 18). Первые их образцы появились примерно в одно и то же время – в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость.

Величиной, используемой для измерения производительности компьютеров, показывающей, какое количество операций с плавающей запятой в секунду выполняет данная вычислительная система является флопс (акроним от англ. Floating point Operations Per Second). Как и большинство других показателей производительности, данная величина определяется путем запуска на испытуемом компьютере тестовой программы, которая решает задачу с известным количеством операций и подсчитывает время, за которое она была решена. Одним из важнейших достоинств показателя флопс является то, что он до некоторых пределов может быть интерпретирован как абсолютная величина и вычислен теоретически, в то время как большинство других популярных мер являются относительными и позволяют оценить испытуемую систему лишь в сравнении с рядом других. Эта особенность дает возможность использовать для оценки результаты работы различных алгоритмов, а также оценить производительность вычислительных систем, которые еще не существуют или находятся в разработке. Следующие по возрастанию единицы измерения: килофлопсы, мегафлопсы, гигафлопсы, терафлопсы, петафлопсы. Терафлопс (TFLOPS, Тфлопс) – величина, используемая для измерения производительности суперкомпьютеров.  1 терафлопс = 1 триллион операций в секунду = 1000 миллиардов операций в секунду.

Примеры: компьютер ЭНИАК, построенный в 1946 году, при массе 27 т и энергопотреблении 150 кВт, обеспечивал производительность в 300 флопс.  БЭСМ-6 (1968) – 1 Мфлопс, Cray-1 (1974) – 160 Мфлопс, Эльбрус-2 (1984) – 125 Мфлопс, Cray Y-MP (1988) – 2,3 Гфлопс, суперкомпьютер СКИФ МГУ (2008) – 60 Тфлопс, суперкомпьютер Blue Gene/L (2006) – 478,2 Тфлопс, суперкомпьютер IBM Roadrunner (2008) – 1,105 Пфлопс, суперкомпьютер Jaguar (2008) – 1,64 Пфлопс.

В 1971 году сотрудник компании Intel Эдвард Хофф создал первый микропроцессор 4004 (рис. 19), разместив несколько интегральных микросхем на одном кремниевом кристалле. Хотя первоначально он предназначался для использования в калькуляторах, по существу он представлял собой законченный микрокомпьютер. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. Микропроцессор дал возможность создать компьютеры четвертого поколения, которые помещались на письменном столе пользователя.
19 апреля 1965 года, в журнале Electronics вышла знаменитая статья Гордона Мура «Переполнение числа элементов на интегральных схемах», в которой будущий сооснователь корпорации Intel дал прогноз развития микроэлектроники на ближайшие десять лет, предсказав, что количество элементов на кристаллах электронных микросхем будет и далее удваиваться каждый год.

Вскоре после выхода статьи эта эмпирически подмеченная закономерность получила название закона Мура (рис. 20) и стала, пожалуй, самым знаменитым законом в компьютерной области и полупроводниковой индустрии, задав некий фундаментальный вектор развития технологии. И хотя закон Мура не принадлежит к числу «научных» – физических или математических – законов, на базе которых строятся современные представления о природе и протекающих в ней процессах, а является просто метко подмеченным эмпирическим правилом, отражающим экспоненциальный характер развития одной из многочисленных тенденций в современном человеческом обществе, он оказался очень удобным для описания определенных вещей и весьма полезным для прогнозирования деятельности компаний в этой области.

Закон Мура стал синонимом технологической эволюции. «Закон Мура – основной лейтмотив нашей деятельности в области конвергенции вычислительных и коммуникационных возможностей, – заявил глава корпорации Intel Крейг Барретт на открытии одного из форумов Intel для разработчиков. – Приверженность корпорации Intel закону Мура позволяет нам создавать интегрированные платформы, которые предоставляют широкий диапазон возможностей для отдельных людей и организаций, использующих эти технологии».

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера (ПК) – вычислительной машины, предназначенной для частного пользователя.

В 1974 году Эдвард Робертс создал первый персональный компьютер "Altair" (рис. 21) на основе микропроцессора 8080 фирмы "Intel" (рис. 22).
В 1975 году о создании ПК Altair узнали два студента Гарвардского университета Билл Гейтс и Пол Аллен. Они первыми поняли насущную необходимость написания программного обеспечения для персональных компьютеров и в течение месяца создали его для ПК Altair на основе языка Бейсик. В том же году они основали компанию Microsoft, быстро завоевавшую лидерство в создании программного обеспечения для персональных компьютеров и ставшую богатейшей компанией во всем мире.

Первые микрокомпьютеры Altair-8800 представляли собой только набор деталей, которые нужно было еще собирать. Кроме того, пользоваться ими было крайне неудобно: они не имели ни монитора, ни клавиатуры, ни мыши. Ввод информации в них осуществлялся с помощью переключателей на передней панели, а результаты отображались с помощью светодиодных индикаторов. Позднее стали выводить результаты с помощью телетайпа – телеграфного аппарата с клавиатурой.

Следующий персональный компьютер был создан в буквальном смысле в гараже двумя молодыми американцами С. Возняком и С. Джобсом в 1976 г. Он получил название Apple-1 (рис. 23). 1 апреля 1976 года они основали компанию Apple, и в январе 1977 года официально зарегистрировали ее.

Весной 1977 г. Возняком и Джобсом был изготовлен относительно дешевый и вместе с тем вполне законченный персональный компьютер Apple-II (рис. 24). Основное достоинство Apple II заключалось в возможности расширения его оперативной памяти до 48 Кбайт и использования 8 разъемов для подключения дополнительных устройств. Благодаря использованию цветной графики его можно было использовать для самых различных игр. Благодаря своим возможностям Apple II завоевал популярность среди людей самых различных профессий. От его пользователей не требовалось знания электроники и языков программирования.
В 1981 году появился персональный компьютер IBM PC (рис. 25), который вскоре стал стандартом компьютерной индустрии и вытеснил с рынка почти все конкурирующие модели персональных компьютеров. Исключение составил только Apple.
В 1984 году был создан Apple Macintosh (рис. 26) – первый компьютер с графическим интерфейсом, управляемый мышью. Благодаря его преимуществам фирме Apple удалось удержаться на рынке персональных компьютеров. Сегодня фирма Apple контролирует 8-10% мирового рынка персональных компьютеров, остальные 90% – IBM-совместимые персональные компьютеры. Большая часть компьютеров Macintosh находится у пользователей в США.
В IBM PC был применен принцип открытой архитектуры, позволивший вносить усовершенствования и дополнения в существующие конструкции ПК. Этот принцип означает применение в конструкции при сборке компьютера готовых блоков и устройств, а также стандартизацию способов соединения компьютерных устройств.

Принцип открытой архитектуры способствовал широкому распространению IBM PC-совместимых микрокомпьютеров-клонов. Их сборкой из готовых блоков и устройств занялось большое число фирм во всем мире. Пользователи, в свою очередь, получили возможность самостоятельно модернизировать свои микрокомпьютеры и оснащать их дополнительными устройствами сотен производителей.

В конце 1990-х годов IBM PC-совместимые компьютеры составили 90% рынка персональных компьютеров.

В 1983 году был создан усовершенствованный персональный компьютер IBM PC/XT (рис. 27).
В 1990-2000 годах, в дополнение к настольным персональным компьютерам, были выпущены ПК "ноутбук" и еще более миниатюрные карманные "палмтоп" (наладонники) – как следует из их названия, помещающиеся в кармане и на ладони. Ноутбуки снабжены жидкокристаллическим экраном, размещенным в откидной крышке, а у палмтопов – на передней панели корпуса.

Кроме портативных персональных компьютеров, создавались и создаются суперкомпьютеры для решения сложных задач в науке и технике – прогнозов погоды и землетрясений, расчетов ракет и самолетов, ядерных реакций, расшифровки генетического кода человека. В них используются от нескольких до нескольких десятков микропроцессоров, осуществляющих параллельные вычисления. Первый суперкомпьютер разработал Сеймур Крей в 1976 году.

В 2002 году в Японии был построен суперкомпьютер NEC Earth Simulator (рис. 28), выполняющий 35,6 триллионов операций в секунду.
В 2005 году компания IBM разработала суперкомпьютер Blue Gene (рис. 29) производительностью свыше 30 триллионов операций в секунду. Он содержит 12000 процессоров и обладает в тысячу раз большей мощностью, чем знаменитый Deep Blue, с которым в 1997 году играл в шахматы чемпион мира Гарри Каспаров. Компания IBM и исследователи из Швейцарского политехнического института в Лозанне впервые предприняли попытку моделирования человеческого мозга.
Дальнейшее развитие вычислительной техники многие специалисты связывают с квантовой механикой и квантовым компьютером.

Необходимо отметить, что сверхъестественный мир квантовой механики не подчиняется законам общей классической физики. Квантовый бит или кубит (qubit) не существует в типичных 0 или 1-бинарных формах сегодняшних компьютеров – квантовый бит может существовать в одной из них или же в обеих системах одновременно. N кубит могут, как и N бит, иметь 2N возможных состояний, однако принципиальное отличие состоит в том, что кубиты могут находиться в суперпозиции этих состояний и быть при этом запутанными между собой. Это значит, что система из нескольких кубитов (квантовый регистр) находится в каждом из состояний с некоторой вероятностью, а самое главное, это значит, что за счет запутанности можно изменить сразу все 2N состояний. В классическом компьютере такая операция потребовала бы 2N шагов. Это обеспечивает беспрецедентный параллелизм вычислений, и именно это является основой мощности квантовых компьютеров. В классическом компьютере за один такт процессор может изменить одно состояние, которое хранят N бит памяти. В квантовом компьютере за один такт можно изменить N кубит, которые находятся в состоянии, являющемся суперпозицией всех базовых состояний, а следовательно, все 2N базовых состояний.

1   2   3   4   5   6   7   8   9   ...   29

Похожие:

В юридической деятельности iconСтатьей 20 Закона определены категории граждан, имеющих право на...
Порядок оказания бесплатной юридической помощи в Управлении Федерального казначейства

В юридической деятельности iconОказание бесплатной юридической помощи в Управлении Федерального...
Российской Федерации, организационно-правовые основы формирования государственной и негосударственной систем бесплатной юридической...

В юридической деятельности iconКто имеет право на получение бесплатной юридической помощи?
Согласно ст. 20 Федерального закона от 21. 11. 2011 n 324-фз "О бесплатной юридической помощи в Российской Федерации" и ст. 4 Закона...

В юридической деятельности iconМ. И. Еникеев юридическая психология. 4
I. Предмет, методы и структура юридической психологии. Краткий очерк исторического развития юридической психологии 4

В юридической деятельности iconАдвокатура и адвокатская деятельность
Оказание юридической помощи гражданам РФ бесплатно. Гарантии предоставления юридической помощи малоимущим. Эксперимент по созданию...

В юридической деятельности iconАдвокатура и адвокатская деятельность
Оказание юридической помощи гражданам РФ бесплатно. Гарантии предоставления юридической помощи малоимущим. Эксперимент по созданию...

В юридической деятельности iconОтчет по практике Название дисциплины
Цель учебной практики – обучение практическим навыкам организационно управленческой деятельности в сфере юридической практики, закрепление,...

В юридической деятельности iconМетодические рекомендации для адвокатов апбо, участвующих в государственной...
Федеральным законом от 21. 11. 2011 №324-фз «Об оказании бесплатной юридической помощи в Российской Федерации», Законом Белгородской...

В юридической деятельности iconМетодические рекомендации по оказанию бесплатной юридической помощи Правовые основания
Статья 18 Закона РФ «О бесплатной юридической помощи в рф» №324-фз от 21 ноября 2011 г

В юридической деятельности iconМетодические рекомендации по оказанию бесплатной юридической помощи Правовые основания
Статья 18 Закона РФ «О бесплатной юридической помощи в рф» №324-фз от 21 ноября 2011 г

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск