Алтайский государственный аграрный университет


Скачать 253.29 Kb.
НазваниеАлтайский государственный аграрный университет
ТипМетодические указания
filling-form.ru > Бланки > Методические указания
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ
Федеральное государственное образовательное учреждение

высшего профессионального образования
АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

ОПРЕДЕЛЕНИЕ И ОЦЕНКА ПАРАМЕТРОВ МИКРОКЛИМАТА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ
Методические указания к лабораторной работе


г. Барнаул 2007

УДК 613646
Дорохова Н.Д., Зыга Ю.С. Определение и оценка параметров микроклимата производственных помещений. Методические указания к лабораторной работе. - Барнаул: Изд-во АГАУ, 2007- -38 с. с прилож.

В методических указаниях приведены основные гигиенические требования к микроклимату производственных помещений и методика определения оценки соответствия параметров микроклимата гигиеническим требованиям.

Методические указания предназначены для проведения лабораторных занятий по данной теме со студентами инженерных и технологических специальностей.
Рекомендованы к печати методической комиссией Института техники и агроинженерных исследований (протокол №4 от 2007 г.)

© Алтайский государственный аграрный университет, 2007

ОПРЕДЕЛЕНИЕ И ОЦЕНКА ПАРАМЕТРОВ

МИКРОКЛИМАТА

ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ
Цель работы: изучить методику определения и оценки параметров микроклимата производственных помещений и рабочих зон.
Порядок выполнения работы:
1. Ознакомиться с основными требованиями к параметрам микроклимата производственных помещений.

2. Изучить методику определения параметров микроклимата.

  1. Определить значение температуры, относительной влажности и скорости движения воздуха согласно заданию.

  2. Оформить протоколы отчета.

  3. Полученные результаты сравнить с нормами (протокол № 4 отчета) и оценить параметры микроклимата.

  4. Изучить методику комплексной оценки параметров микроклимата и по номограмме (рис. приложения) определив эквивалентно-эффективную температуру, сделать вывод о комфортности микроклимата.



Оборудование
Гигрометр психрометрический ВИТ-1, психрометр аспирационный, актинометр Носкова, барометр, барограф, термограф, гигрограф, гигрометр волосяной, для определения скорости движения воздуха - лабораторная установка, включающая анемометры (крыльчатый АСО-3 и чашечный МС-13) и цифровой переносной анемометр АП-1.

Рисунки приборов и экспериментальной установки приведены в приложении.

1. ОСНОВНЫЕ ТРЕБОВАНИЯ К МИКРОКЛИМАТУ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ
Метеорологические условия - это физическое состояние воздушной среды, определяемое действующим на организм человека сочетанием температуры, влажности, скорости движения воздуха, атмосферного давления.

Терморегуляция - способность организма поддерживать постоянной температуру тела человека в определенных границах (36,1-37,2°С). Она обеспечивается изменением двух составляющих: теплообмена (теплопередачи) и теплоотдачи. Из них основное значение имеет регуляция теплоотдачи, так как этот путь регуляции теплового равновесия организма человека более изменчив и управляем.

Микроклимат производственных помещений - это климат в ограниченном пространстве (внутри помещений), который кроме основных параметров метеоусловий (температуры, скорости движения воздуха, относительной влажности) для отдельных производств дополнительно и интенсивностью теплового излучения от нагретого оборудования.

Факторы, влияющие на микроклимат, можно разделить на две группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и др.). При выполнении работ на открытой местности или площадках метеорологические условия определяются климатическим поясом и сезоном года.

Указанные параметры могут изменяться в широких пределах и имеют ряд особенностей: значительную выраженность отдельных факторов, определенное их сочетание во многих случаях, большую изменчивость в связи с особенностями технологических процессов и оборудования и т.п.

Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару или профзаболеванию, а низкая температура воздуха - вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения.

Влажность воздуха оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность при высокой температуре воздуха способствует перегреванию организма, при низкой температуре она усиливает теплоотдачу с поверхности кожи, что ведет к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек дыхательных путей работника.

Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно - при низких.

Поэтому благоприятный (комфортный) микроклимат на производстве и рабочих местах является важным условием высокопроизводительного труда, профилактики заболеваний и травматизма. Терморегуляция зависит не только от внешних условий, но и от влияния на теплоотдачу (энергозатраты) организма тяжести работы.

Все работы в зависимости от интенсивности общих энергозатрат организма человека по СанПиН 2.2.4.548 - 96 «Гигиенические требования к микроклимату производственных помещений» подразделяются на легкие (Iа и Iб), средней тяжести (IIа и IIб) и тяжелые (III).

Iа - работы с интенсивностью энергозатрат до 139 Вт (до 120 ккал/ч.), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся незначительным физическим напряжением;

Iб - работы с интенсивностью энергозатрат 141- 174 Вт (121 - 150 ккал/ч.), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением;

IIа - работы с интенсивностью энергозатрат 175 - 232 Вт (150 - 200 ккал/ч.), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения;

IIб - работы с интенсивностью энергозатрат более 232-290 Вт (201 - 250 ккал/ч.), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением;

III - работы с интенсивностью энергозатрат более 290 Вт (более 250 ккал/ч.), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

Следовательно, нормы параметров микроклимата производственных помещений зависят от степени тяжести выполняемой работы (уровня энергозатрат), периода года и подразделяются на оптимальные и допустимые.



Оптимальные - такие сочетания параметров, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма, напряжение реакций терморегуляции, не выходящих за пределы физиологических приспособительных возможностей.

Нормы температуры, относительной влажности и скорости движения воздуха установлены для рабочей зоны - пространства высотой до 2 м над уровнем пола или площадки, на котором находится место постоянного или временного пребывания работающего (табл. 1). Постоянным считается место, на котором работающий проводит более50% рабочего времени (или более 2 ч непрерывно). Если работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом является вся рабочая зона.

Если по технологическим требованиям, технически и экономически обоснованным причинам оптимальные параметры микроклимата не могут быть обеспечены, то устанавливают пределы их допустимых значений.

2. МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА
2.1. Определение температуры воздуха
Температура воздуха - степень его нагретости, выраженная в градусах Цельсия (Со).

Температура в большинстве измеряется ртутным или спиртовыми термометрами, подвешенными на 8-10 мин в проверяемой зоне. В помещениях с высоким уровнем теплового излучения температуру следует определять с помощью парного термометра, состоящего из двух ртутных термометров, резервуар одного из которых зачернен, а другого - посеребрен.

Для непрерывной записи значений температуры воздуха на бумажную диаграмму применяют термографы М-16 АС суточный (рис. 1 приложения А) или М-16 АН-недельный. Измерительно-регистрирующая часть их представляет собой биметаллическую пластину 1, соединенную рычагом со стрелкой 2, на конце которой закреплено перо. Барабан 3 с бумажной лентой приводится в движение часовым механизмом, который заводится ключом. Продолжительность одного оборота барабана составляет 26 ч для термографа М-16 АС и 176 ч - для М-16 АН.

Принцип действия прибора основан на свойстве биметаллической пластинки (датчика температуры) изменять радиус изгиба с изменением температуры воздуха. Деформация пластины преобразуется с помощью передаточного механизма в перемещение стрелки с пером по бумажной диаграмме, закрепленной зажимом на барабане часового механизма.

Бланк диаграммы разделен по вертикали на горизонтальные линии с ценой деления 1 секунда, а по горизонтали - вертикальными дугообразными линиями с ценой деления, соответствующей 15 мин времени оборота барабана для суточных, 2-м часам - для недельных термографов.

Определение температуры воздуха можно совместить с определением относительной влажности, используя показания сухого термометра гигрометра психометрического типа ВИТ-1 (рис. 2 приложения А).


2.2. Определение влажности воздуха
В атмосферном воздухе всегда содержится некоторое количество влаги в виде водяных паров. Когда количество их в воздухе при определенной температуре достигает максимального значения, воздух называется насыщенным.

Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность выражается упругостью водяных паров в граммах, приходящихся в 1 м3 воздуха. Максимальная влажность - упругость водяных паров в граммах при полном насыщении воздуха влагой при данной температуре или количество водяных паров в граммах, необходимое для полного насыщения 1 м3 или 1 кг воздуха при данной температуре (табл. 2).
Таблица 2
Максимальное содержание паров в воздухе при полном насыщении в зависимости от температуры


Температура, °С

f, г/кг

Температура, °С

f, г/кг

8

6,60

10

7,50

9

7,00

11

8,00

12

8,60

20

14,40

13

9,20

21

15,30

14

9,80

22

16,30

15

10,50

23

17,30

16

11,20

24

18,40

17

11,90

25

19,50

18

12,70

26

20,70

19

13,50

27

22,00


Примечание: Содержание водяного пара в воздухе определено при нормальном атмосферном давлении.
Относительная влажность - отношение абсолютной влажности к максимальной влажности воздуха при данной температуре, выраженная в процентах. При оценке воздушной среды этот показатель является основным критерием.

При определении влажности используют гигрометры типа ВИТ-1, гигрометры волосяного типа М-19 или аспирационный психрометр (рис. 2, 3, 4 приложения А).

Гигрометр психометрический типа ВИТ-1 состоит из двух одинаковых ртутных или спиртовых термометров, закрепленных на пластмассовом основании (корпусе). Сухой термометр 1 показывает температуру воздуха в зоне измерения. Резервуар влажного термометра 2 обернут гигроскопической тканью, конец которой опущен в стеклянный питатель 3 с дистиллированной водой. По ткани к резервуару этого термометра поступает влага. Определив показания термометров и разность температур, по психометрической таблице (табл. 1 приложения Б) нанесенной на корпус психрометра, находят относительную влажность воздуха.

Относительную влажность можно определить непосредственно по циферблату гигрометра волосяного типа М-19 (рис. 3 приложения А), принцип работы которого основан на способности человеческого волоса изменять свою длину в зависимости от влажности воздуха. Обезжиренный в эфире (спирте) человеческий волос 1, через блок соединены с легкой стрелкой (указателем) 2. При уменьшении относительной влажности приемная часть (волос) укорачивается, а при увеличении - удлиняется. Стрелка-указатель в соответствии с этими изменениями перемещается вдоль шкалы 3, на которой нанесены деления от 0 до 100, указывающие процент относительной влажности.

Гигрометр может определять влажность при отрицательных температурах. Погрешность в работе гигрометра 5-10%.

Психрометр аспирационный (рис. 4 приложения А) устроен аналогично. Отличие его заключается в том, что оба термометра 1 заключены в светлые металлические трубки, через которые с помощью вентилятора просасывается исследуемый воздух. Привод вентилятора у аспирационного психрометра МВ-4М механический, пружину которого перед началом измерений заводят с помощью ключа 3, а у психрометра М-34 - электрический. Аспирация обеспечивает постоянную смену воздуха вокруг термометров, что позволяет определить влажность значительной массы воздуха, а не только той его части, которая находится в непосредственной близости прибора как у психрометрических гигрометров. Всасываемый воздух выбрасывается наружу через прорези в аспирационной головке 2.

Сухой термометр будет показывать температуру воздуха, а показания смоченного термометра будут меньше из-за охлаждения, вызванного испарением воды с поверхности батиста, облегающего резервуар термометра. Принцип определения относительной влажности аспирационным психрометром аналогичен гигрометру ВИТ-1 (табл. 2 приложения Б).

Для непрерывной записи значений влажности воздуха на бумажную ленту применяют гигрографы М-21А (рис. 5 приложения А). Также как и термографы, они бывают суточные (С) и недельные (Н). Принцип действия гигрографа основан на свойстве женского волоса 1 изменять свою длину с изменением влажности воздуха. Изменение длины пучка волос преобразуется с помощью передаточного механизма в перемещение стрелки 2 с пером по бумажной диаграмме, закрепленной на барабане 3. При увеличении относительной влажности воздуха пучок волос удлиняется и стрелка с пером перемещается вверх, а при уменьшении опускается вниз.

На относительную влажность влияет величина барометрического давления, определяемая барометром или барографом (рис. 6 а, б приложения А).

Барометр-анероид предназначен для измерения давления воздуха. Его приемное устройство (анероидная коробка) выполнена в виде плоской металлической цилиндрической коробки с крышкой и дном. В коробке создано сильное разряжение, но она не сплющивается под действием внешнего давления, т.к. крышка оттягивается пружиной. При изменениях давления упругие деформации крышки через систему рычагов передаются стрелке-указателю, которая перемещается вдоль шкалы, отградуированной в единицах давления. Стрелка барометра указывает на циферблате величину давления в мм. рт. ст. или в Паскалях.

Барограф, как гигрограф и термограф, (рис. 6 б приложения А) представляет собой самопишущий прибор .для непрерывной регистрации колебаний атмосферного давления воздуха. Заводной ключ часового механизма располагается на оси барабана под крышкой корпуса. Движение крышек анероидных коробочек передается с помощью системы рычагов стрелке с пером, обеспечивающей непрерывную регистрацию на диаграммной ленте величину атмосферного давления. Диаграммная лента прибора разделена по вертикали горизонтальными параллельными линями с ценой деления, соответствующей 1мбар атмосферного давления, а по горизонтали - вертикальными дугообразными линиями с ценой деления, соответствующе 15 мин времени оборота барабана для суточных, 2-м часам - для недельных.

1 бар = 7,5 · 10 мм.рт.ст.; 1 миллибар (мбар) = 0,7501 мм.рт.ст.
2.3 Определение скорости движения воздуха
Для измерения скорости воздушного потока применяют анемометры различных конструкций (крыльчатые и чашечные).

Анемометр чашечный МС-13 (рис. 7 а приложения А) предназначен для измерения скорости воздуха от 1 до 20 м/с. Анемометр ручной крыльчатый АСО-3 (рис. 7 б приложения А) для измерения скорости воздуха в пределах 0,3-0,5 м/с.

Чашечный анемометр в верхней части имеет четыре полых полушария (чашечки) 4. которые под влиянием потока воздуха вращаются вокруг вертикальной оси. Нижний конец оси при помощи зубчатой передачи соединен со стрелками, расположенными на циферблате 2. Передвигаясь по шкале, они указывают число делений. Большая стрелка показывает единицы и десятки, маленькие (в зависимости от их количества) - сотни, тысячи делений.

Сбоку корпуса 1 циферблата имеется колечко (арретир) 3, с помощью которого включается и выключается счетчик оборотов стрелок. Перед началом измерения при выключенном счетчике записывают показания стрелок. Прибор устанавливают перпендикулярно воздушному потоку и дают чашечкам некоторое время вращаться вхолостую. Затем одновременно включают счетчик анемометра и секундомер на одну минуту, после чего записывают конечные показания прибора (стрелок циферблата). Разность между конечным и начальным показаниями счетчиков делят на время измерения (60 с) и определяют число делений в секунду.

Аналогично скорость движения воздуха определяется крыльчатым анемометром, у которого ветроприемником служит крыльчатка 4, насаженная на ось с подшипниковыми втулками.

Для перевода скорости оборота счетного механизма (дел/с) в м/с к паспорту анемометров АСО-3 и МС-13 прилагаются тарировочные графики (рис. 8, 9 приложения А).

При необходимости постоянного контроля скорости воздушного потока используется анемометр цифровой переносной АП-1 с диапазоном измерения скорости движения воздуха 0,3-5,0 м/с и 1-20 м/с.

Анемометр АП-1 включает в себя:

- первичные измерительные преобразователи АП1-1 и АП1-2, преобразующие энергию воздушного потока во вращение ветроприемника, вырабатывающего электрические импульсы с частотой, пропорциональной скорости воздушного потока;

- цифровой измерительный прибор, регистрирующий импульсы и выдающий цифровую информацию о скорости воздушного потока.

Принципы работы анемометра АП-1 можно изучить с помощью лабораторной установки, схема которой приведена на рисунке 10 приложения А.

Цифровой измерительный прибор 2 выполнен в отдельном корпусе, в котором размещены плата преобразователя с индикаторами, батареи питания, разъём для подключения первичных преобразователей АП1-1 или АП1-2 и выпрямительного зарядного устройства. На передней панели измерительного прибора 2 имеется окно 3 со светофильтром для цифровых индикаторов. Задняя крышка корпуса выполнена в виде съёмной кассеты для замены элементов питания. Питание анемометра осуществляется от восьми батарей аккумуляторного типа Д-0,26 с напряжением 9,6 В.

Для подзарядки аккумуляторных батарей в комплект прибора входит подзарядное устройство, питаемое от сети напряжением 220 В. В качестве первичных измерительных преобразователей используются крыльчатый (АП1-1) и чашечный (АП1-2) анемометры 1 без циферблата, соединенные с цифровым измерительным прибором трехпроводным кабелем в винилхлоридной трубке через разъём.

Внутри корпуса анемометров размещены обтюратор (диск с прорезями), закрепленный на полой оси ветроприемника (крыльчатки или чашечки).

При измерении преобразователи АП1-1 или АП1-2 могут устанавливаться на штангу через держатель.
2.4 Определение лучистой тепловой энергии
Интенсивность теплового излучения определяют актинометром (рис. 11 приложения А), на задней стенке которого расположены белые и зачерненные алюминиевые пластины, соединенные с термопарами. Принцип действия прибора основан на возбуждении электродвижущей силы термопарами вследствие того, что черные пластинки под воздействием лучистой энергии нагреваются до более высокой температуры, чем белые. Электродвижущая сила регистрируется гальванометром, шкала которого отградуирована в кал/см2 · мин.

Перед измерением интенсивности теплового излучения стрелку гальванометра нужно установить на нуль. После этого, открыв заднюю крышку, прибор установить перед источником теплового излучения так, чтобы лучи падали перпендикулярно к приемнику лучистой энергии.

Через 3-4 сек записывают показатели стрелки и убирают прибор, закрыв приемник крышкой. Допустимая величина лучистой энергии на рабочем месте - 0,5 кал/см 2 мин.

3. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
3.1 Определение условий измерения параметров
Определить температуру воздуха по показанию сухого термометра психрометра ВИТ-1 и давление по барометру в Паскалях. Полученные данные (вид помещения, категорию работы по энергозатратам) занести в протокол №1 отчета.
3.2 Определение скорости движения воздуха
Скорость движения воздуха определить с помощью анемометров лабораторной установки (рис. 10 приложения А). Последовательность выполнения:

  • выключателем 4 включить блок питания;

  • создать воздушный поток, включив вентилятор 5 выключателем 6;

  • занести в протокол №2 отчета показания стрелок анемометров в положении счетчика «выкл.», при вращении чашечек или крыльчатки вхолостую;

  • установить регулятор оборотов вентилятора 7 в положение 1 для измерения крыльчатым анемометром, в положение II - для чашечного; одновременно включить секундомер и счетчик крыльчатого анемометра, во втором случае - чашечного на одну минуту;

  • занести в протокол отчета;

  • найти разность делений в минуту и, разделив ее на 60 с, определить дел/с;

  • по тарировочному графику (рис. 8 и 9 приложения А) определить скорость движения в м/с и занести в протокол №2 отчета;

  • одновременно со снятием показаний стрелок циферблата анемометра снять показания сухого и влажного термометров гигрометра ВИТ-1 занести в протокол №3 и определить значение относительной влажности при действии воздушного потока по таблице №1 приложения Б.


3.3 Определение относительной влажности
3.3.1 Определение относительной влажности по приборам
На основе изучения методики определения денного параметра микроклимата выполнить следующее практическое задание:

  • снять показания сухого и влажного термометров гигрометра ВИТ-1 с воздушным потоком и без него и занести в протокол №3 отчета;

  • по таблице, расположенной на панели прибора или таблице 1 приложения Б, определить значение относительной влажности и занести в протокол № 3 отчета;

- снять показания сухого и влажного термометров аспирационного психрометра и определить относительную влажность по психрометрической таблице 2 приложения Б. Данные занести в протокол №3 отчета.
3.3.2 Определение расчетного значения относительной влажности.
Относительная влажность  определяется по формуле:

где qф - абсолютная влажность, г/кг;

fс - максимальное содержание водяных паров при температуре сухого термометра, г/кг (табл. 2).
Абсолютная влажность определяется по формуле:
qф = fва · (tc - tв) · Р,
где fв - максимальное содержание водяных паров при температуре влажного термометра, г/кг (табл. 2);

tc, tв - показания «сухого» и «влажного» термометров психрометра, Со;

Р - барометрическое давление, мм. рт. ст.;

а - психрометрический коэффициент (табл. 3);

Таблица 3
Значение психрометрического коэффициента (а)


Скорость воздуха, м/с

0,13

0,16

0,2

0,3

0,4

0,8

Психрометрический коэффициент

0,0013

0,0012

0,0011

0,0010

0,0009

0,0008


Последовательность расчета:

  • рассчитать абсолютную влажность, для чего значение атмосферного давления, определенное по барометру в Па, перевести в мм. рт. ст. (1мм. рт. ст. = 133,322 Па);

  • рассчитать относительную влажность по формуле, результат занести в протокол №3 отчета.


4. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ ПАРАМЕТРОВ МИКРОКЛИМАТА И ИХ ОЦЕНКА
4.1. Форма отчета
Результаты определения параметров микроклимата занести в протоколы отчета.

Протокол №1

Условия измерения параметров микроклимата


Наименование помещения

Категория работ по тяжести

Период года

t, °C

Р, Па

















Протокол №2

Скорость движения воздуха


Наименование прибора

Число делений, дел/мин

Разность, дел/мин

Дел/с

Скорость движения воздуха, м/с

начальные

конечные

1. Чашечный анемометр
















2. Крыльчатый анемометр

















Протокол №3

Относительная влажность воздуха


Наименование прибора

Показания термометров, °С

Относительная влажность, %

сухого

влажного

табличная

расчетная

1. Гигрометр ВИТ-1

1.1 без воздушного потока

1.2 под воздействием воздушного потока













2. Аспирационный психрометр













4.2. Оценка параметров микроклимата
4.2.1. Оценка результатов замеров
Для оценки соответствия параметров микроклимата заполнить протокол №4 отчета, сопоставить фактические значения с оптимальными и сделать выводы.
Протокол №4

Сравнение фактических параметров метеорологических

условий с нормами


Исследуемое помещение

Тяжесть работы

Оптимальные условия

Действительные условия

Температура, °С

Относи тельная влажность, %

Скорость движения воздуха, м/с

Температура, °С

Относи тельная влажность, %

Скорость движения воздуха, м/с


























4.2.2. Комплексная оценка параметров микроклимата
Для оценки влияния всех параметров микроклимата на организм человека комплексно существуют разные способы. Чаще всего используют метод, основанный на определении эквивалентно-эффективной температуры с помощью номограммы (приложение В) и сравнении соответствующих условий работы с зоной комфорта.

Эквивалентно-эффективной температурой (ЭЭТ) называется комплекс метеорологических условий, вызывающий одинаковый эффект и обусловленный тремя факторами: температурой, влажностью и скоростью движения воздуха.

Приведенная номограмма составлена для людей, одетых в одежду для комнатных условий, занятых сидячей или легкой мускульной работой при отоплении помещения конвекционным способом. На номограмме обозначены зоны комфорта (зона хорошего самочувствия) и линия комфорта.

Зона комфорта расположена между 17,2° и 21,2° при различных комбинациях температуры, влажности и скорости движения воздуха. В этих пределах (по всей очерченной площади) не менее чем 50% всех испытуемых людей чувствуют себя хорошо (комфортно). На номограмме градусы эффективной температуры нанесены на кривой, соответствующей скорости движения воздуха, равной нулю.

Эффективной температурой (ЭТ) называется комплекс метеорологических условий, вызывающий одинаковый эффект и обусловленный двумя факторами: температурой и влажностью воздуха.

Линия комфорта проходит внутри зоны комфорта в пределах 18,1°-18,9°, пересекая кривые скоростей движения воздуха и характеризуя собой приятное самочувствие не менее 95% из всех испытуемых лиц.

Эффективная и эквивалентно-эффективная температура вообще не являются реальной температурой, которую можно бы было наблюдать по какому-либо прибору. Обе эти величины являются функциями основных метеорологических факторов (температуры, влажности и скорости движения воздуха), а термины ЭТ и ЭЭТ введены лишь для выражения одинаково восприимчивого ощущения тепла или холода при различных комбинациях значений метеорологических факторов.

Для определения ЭЭТ на номограмме отмечают показания сухого и влажного термометров и соединяют их прямой линией. Точка пересечения ее с кривой, соответствующей скорости воздуха, показывает значение ЭЭТ, и ее положение относительно зоны комфорта. Если значение находится в пределах зоны комфорта, то весь исследуемый комплекс метеорологических условий обеспечивает нормальный тепловой обмен. Если значение находится вне зоны комфорта, то по номограмме определяют пути создания комфортных условий. Это достигается изменением одного или нескольких параметров.

Определив ЭЭТ по данным действительных условий протокола №4, сделать выводы о комфортности условий работы по микроклимату.

Контрольные вопросы


  1. Какие факторы влияют на микроклимат?

  2. Какие параметры определяют метеоусловия рабочей зоны?

  3. Что называется абсолютной влажностью воздуха?

  4. Что называется относительной влажностью воздуха?

5. Какие приборы используют для измерения скорости движения воздуха?

6. Сущность терморегуляции и теплообмена.

7. От каких показателей зависит выбор норм параметров микроклимата?

  1. Что учитывают при определении категории работы по тяжести?

  2. Принцип работы гигрометра ВИТ-1?

  1. Что понимается под эквивалентно-эффективной температурой?

  2. Зона и линия комфорта. Сущность этих понятий.

  3. Какова последовательность определения скорости движения воздуха?

  4. Каким прибором определяется тепловая лучистая энергия?

  5. Что измеряют термографом и барографом? Принцип их работы.

15. Перечислить приборы для измерения относительной влажности.

16. Какой документ определяет гигиенические нормы микроклимата?

Список использованной литературы


  1. ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

  2. Беляков Г.И. Практикум по охране труда.- 2 изд., перераб. и доп.-М.: Колос,.-2002 С. 6-24

  3. Каспаров А.А. Гигиена труда и промышленная санитария.- М.: Медицина,.- 1977.- С. 106-128

  4. Р 2.2.2006-05. Гигиена труда. Руководство по гигиенической оценке факторов рабочей среды и трудового процесса.

  5. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.


ПРИЛОЖЕНИЕ А






















Рис. 10. Лабораторная установка для определения скорости движения воздуха с помощью анемометра АП-1

1 - анемометры; 2 - цифровой измерительный прибор; 3 - окно для цифровых индикаторов; 4 - выключатель блока питания; 5 - вентилятор; 6 - выключатель вентилятора; 7 - регулятор оборотов вентилятора



Рис. 11. Актинометр



ПРИЛОЖЕНИЕ Б





Похожие:

Алтайский государственный аграрный университет iconПоложение об организации и осуществлении образовательного процесса...
В настоящем Положении излагаются правила организации и осуществления образовательной деятельности в фгоу впо «Алтайский государственный...

Алтайский государственный аграрный университет iconАлтайский государственный аграрный университет
Архилаев М. А. Расследование и учет несчастных случаев на производстве: учебно-методическое пособие / М. А. Архилаев. Барнаул: Изд-во...

Алтайский государственный аграрный университет iconРоссийской Федерации Забайкальский аграрный институт-филиал фгбоу...
Методические указания для студентов технологического факультета направления 21. 03. 02 Землеустройство и кадастры. / Забайкальский...

Алтайский государственный аграрный университет iconФедеральное государственное бюджетное образовательное учреждение...
Криминалистика. Часть Раздел Криминалистическая тактика : рабочая тетрадь для выполнения лабораторных заданий/ Г. М. Меретуков, В....

Алтайский государственный аграрный университет iconФедеральное бюджетное образовательное учреждение высшего образования...
Высшего образования «белгородский государственный аграрный университет имени в. Я. Горина»

Алтайский государственный аграрный университет iconФгбоу впо «Кубанский государственный аграрный университет» расследование убийств
А. В. Гусев – канд юр наук, профессор кафедры криминалистики фгкоу впо «Краснодарский университет мвд рф»

Алтайский государственный аграрный университет iconФгбоу впо «Кубанский государственный аграрный университет» криминалистика
А. В. Гусев профессор кафедры криминалистики фгкоу впо «Краснодарский университет мвд рф», канд юр наук, доцент

Алтайский государственный аграрный университет iconФгбоу впо «Российский государственный аграрный университет мсха имени К. А. Тимирязева»

Алтайский государственный аграрный университет iconФгбоу во «Оренбургский государственный аграрный университет» Министерство...

Алтайский государственный аграрный университет icon1. Гражданское право как отрасль права
Первый проректор по учебной работе фгбоу впо «Алтайский государственный университет»

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск