Пособие по проектированию Гершкович В. Ф


НазваниеПособие по проектированию Гершкович В. Ф
страница3/5
ТипДокументы
filling-form.ru > Туризм > Документы
1   2   3   4   5

2.3. Оптимальный воздухообмен

Естественная вентиляция жилища нелогична, если исходить из современных представлений о комфорте и об энергетической эффективности. С одной стороны, воздухообмен, обеспечиваемый решетками в кухнях и санузлах, недостаточен, особенно для больших квартир. С другой стороны, он избыточен, если учесть, что в течение значительной части суток, когда в квартире никого нет, тепло непрерывно покидает жилище через вытяжные решетки.

Новые нормы проектирования жилых домов не исключают возможности применения систем вентиляции с естественным побуждением, однако энергоэффективные технические решения вентиляции должны основываться на новой концепции, смысл которой определяется следующими положениями:
1. Не нужно требовать от естественной вентиляции полноценного воздухообмена в любое время суток. Средствами естественной вентиляции должен быть обеспечен минимальный пассивный воздухообмен, достаточный для режима вентилирования помещений, в которых временно никого нет.
2. Активный воздухообмен должен обеспечиваться средствами механической вентиляции, включаемой периодически. Санузлы должны активно вентилироваться тогда, когда ими пользуются, а кухни — тогда, когда в них готовят пищу.
3. Вентиляционные каналы из кухонь и санузлов должны выполняться из долговечных материалов.
4. В жилых комнатах с окнами, имеющими герметизированные притворы, должны проектироваться приточные устройства.

Следуя положению 1, нельзя проектировать в жилом доме систему механической вентиляции с непосредственным подключением вентилятора к сборной вентиляционной шахте через обратный и огнезадерживающий клапаны, потому что при выключенном вентиляторе никакого воздухообмена в квартире не будет.

Следуя положению 2, вытяжные вентиляторы в кухнях и санузлах необходимы, но каналы должны быть или обособленными, или присоединенными к сборной шахте через каналы-спутники высотою не менее 2 м. Тогда при выключенных вентиляторах в квартире будет обеспечен постоянный пассивный воздухообмен, а при включенных — временный активный.

Следуя положению 3, нельзя проектировать в жилом доме систему вытяжной вентиляции, включающую в себя воздуховоды из оцинкованной стали, потому что долговечность этих воздуховодов несопоставимо мала по сравнению с долговечностью жилого дома. Воздушные каналы должны выполняться в строительных конструкциях, то есть, из бетона или кирпича, и только каналы-спутники длиною 2 м могут выполняться из стальных труб.

Следуя положению 4, в наружных ограждающих конструкциях (обычно в окнах) должны устраиваться отверстия для приточной вентиляции, — так называемые проветриватели, но наиболее эффективным техническим решением вентиляции всех помещений квартиры является установка в них приточно-вытяжного рекуперативного аппарата ТеФо (см. раздел 2.1.4).

На рис. 8 показаны расходы воздуха в двухметровых по высоте каналах спутниках трех различных диаметров при естественном побуждении.

Указанные на рис. 8 зависимости, полученные аналитически*, характерны для свободного движения воздуха. При наглухо закрытых створках окон через систему вытяжной вентиляции воздух вообще не пойдет. Предполагается, что приточный воздух будет заходить в помещения через открытые проемы форточек или через проветриватели, встраиваемые в переплеты современных окон

.


Для пассивного естественного воздухообмена достаточен расход воздуха, равный 75 % нормативного расхода. При нормативном [1] расходе вытяжного воздуха из объема кухни 90 м3/ч пассивный воздухообмен должен быть около 68 м3/ч, и при наружной температуре переходного периода +5 °C такой расход может быть обеспечен воздушным каналом диаметром 100 мм. Для вытяжки из санузла при нормативном расходе 50 м3/ч пассивный воздухообмен при неработающем вентиляторе составит 38 м3/ч, и воздушный канал диаметром 80 мм будет достаточен для этой цели.

Вытяжной вентилятор должен устанавливаться на входе в вытяжной канал. Он должен подавать удвоенный нормативный расход воздуха и развивать давление, достаточное для преодоления гидравлического сопротивления воздушного канала от вентилятора до выхода в атмосферу. При этом гидравлическое сопротивление сборной шахты должно рассчитываться при всех работающих вентиляторах, соединенных со сборным каналом.

Сечение сборной шахты должно быть таким, чтобы при работе всех, кроме одного, квартирных вентиляторов, подающих вытяжной воздух в эту шахту, в нем не создавалось давление, способное опрокинуть естественную тягу в том единственном канале, в котором вентилятор не работает.

Нормами [1] установлено, что удельное сопротивление трению при движении воздуха в сборной шахте во время работы всех присоединенных к ней местных вентиляторов не должно превышать 0,65 Па/м*.

С учетом этого ограничения минимальную площадь сечения сборной шахты F, м2, рекомендуется приближенно определяться по формуле

где B — коэффициент, величина которого зависит от шероховатости стенки шахты и принимается равной 0,0004 для стальной трубы, 0,0006 — для бетонной и 0,0009 — для кирпичной шахты.
GК — расчетный для выбора сечения шахты расход воздуха, м3/ч, при всех работающих местных вентиляторах.

Величину GК рекомендуется рассчитывать по формуле:

где ∑gH — сумма нормативных расходов воздуха, м3/ч, из помещений, воздух из которых собирается в сборном канале.

Задача четвертая. Определить минимальную площадь сечения сборной вентиляционной шахты 16-этажного жилого дома, выполненной из железобетона, если на каждом этаже в нее подключены каналы-спутники из кухни и совмещенного санузла одной квартиры.

Нормативный [1] расход вытяжного воздуха из кухни равен 90, а из санузла — 50 м3/ч. Расчетный для выбора сечения шахты расход воздуха, м3/ч, при всех работающих местных вентиляторах определяется по формуле 4:
GК = 2 . 16 . (90 + 50) = 4480 м3/ч,
а площадь сечения сборной шахты — по формуле 3:
F = 0,0006 . (44800,75) = 0,328 м2.

Как правило, вентиляционные блоки, разработанные в свое время для многоэтажных типовых жилых домов, не удовлетворяют новым требованиям, регламентирующим площадь сечения сборной шахты. Это естественно, поскольку старые каналы проектировались исключительно для небольших расходов воздуха при гравитационном побуждении.

Несмотря на то, что сборная шахта в новых домах будет больше, чем она была в домах, построенных в прошлом веке, вытяжную вентиляцию рекомендуется проектировать таким образом, чтобы вытяжной канал в целом был компактнее, чем прежде. Этого удается достичь, если обособленные каналы-спутники, площадь сечения которых теперь минимальна, разместить в габаритах сборной шахты.

На рис. 9, а показано техническое решение вентиляционного блока применительно к условиям четвертого примера. Обособленные каналы-спутники нормативной длиною 2 м каждый не занимают полезного сечения сборной шахты, которая остается полностью свободной выше того уровня, где эти каналы заканчиваются. Направление движения воздуха в сборной шахте совпадает с направлением входа воздуха из каналов-спутников, что создает эжектирующий эффект, способствующий дополнительной устойчивости естественной тяги в каналах-спутниках, работающих в режиме пассивной вентиляции. Таким образом, габаритные размеры вентиляционного блока совпадают с размерами сборной шахты. Уменьшенные обособленные каналы открывают возможность применения в многоэтажных домах многоканальных блоков, в которых обособленные вытяжные каналы, не объединяясь, проходят до выброса наружу. При этом могут использоваться монолитные каналы в поперечных несущих стенах, которые в этом случае не занимают полезной площади квартир. На рис. 9, б показаны размеры многоканального блока для санитарного узла 12-этажного жилого дома.


Применение 100-миллиметровых каналов для вытяжки из санузлов вместо восьмидесятимиллиметровых, как это было определено в результате анализа рис. 8, связано с большой протяженностью обособленного канала. 80-миллиметровый канал был бы достаточен для пассивной вентиляции, для которой длина канала не имеет значения, поскольку потери на трение в протяженном канале соответствуют увеличению располагаемого давления при естественном побуждении. В режиме активной вентиляции гидравлические потери могут оказаться чрезмерными по сравнению с давлением, развиваемым вентилятором. Поэтому рекомендации, касающиеся размеров вытяжных каналов, сделанные на основе анализа рис. 8, к многоканальным блокам не относятся, и диаметры каналов в них нужно выбирать для режима активной вентиляции с учетом давления, развиваемого вентилятором, при подаче удвоенного нормативного расхода воздуха.

2.4. Сокращение энергоемкости систем водоснабжения

Расход воды в системах холодного и горячего водоснабжения жилого дома определяется двумя факторами, — поведением жителей и давлением воды.

Энергосберегающее поведение жителей определяется, главным образом, суммами ежемесячных платежей за воду, если платежи эти отвечают объемам фактического потребления воды. Действующие в Украине нормы [7] требуют обязательной установки квартирных водосчетчиков.

Нормами [1] установлена новая предельная величина давления у водоразборных кранов. Теперь она равна 4,5 бар вместо 6, и это обстоятельство должно способствовать заметному уменьшению потребления воды в многоэтажных жилых домах и, как результат, уменьшению нормы водопотребления, которая пока остается чрезмерно высокой. Более низкое нормативное давление ведет к увеличению количества зон в высотных зданиях и к уменьшению мощности повышающих водопроводных насосов.

Для того чтобы уменьшить потребление энергии приводами повышающих насосов, насосные установки нужно выполнять с пневмобаками, при наличии которых насосы могут автоматически отключаться в период, когда нет водоразбора. Ведущие фирмы поставляют в собранном виде насосные группы с пневмобаком с возможностью одновременного включения нужного количества насосов, один из которых служит для подачи воды при минимальной потребности.

Самым рациональным способом управления повышающим насосом является частотное регулирование. Применением сложных систем управления повышающими насосами определяется необходимость единой повышающей установки для систем холодного и горячего водоснабжения. Она должна рассчитываться на подачу суммарного секундного расхода воды при давлении, учитывающем потери в водонагревателях горячего водоснабжения, которые не должны превышать 1 бар в обеих ступенях подогрева. При этом максимальное давление в системе горячего водоснабжения не должно превышать 4,2 бара, а в холодном водопроводе в этом случае допускается 4,8 бара.

При необходимости понижения давления во внутренней водопроводной системе невысокого здания применяется регулятор давления прямого действия «после себя».

На рис. 10 показана схема водопроводного ввода с регулятором давления «после себя». Регулятор должен применяться в тех случаях, когда давление Р1 в городском водопроводе, выраженное в метрах водяного столба, превышает высоту, м, водопроводной системы здания на 20 м и более. При установке регулятора следует иметь в виду, что он может применяться исключительно на хозяйственно-бытовых системах водоснабжения.
На противопожарных системах регуляторы давления по схеме рис. 10 устанавливать не допускается.

Установка регуляторов давления «после себя» рекомендуется на водопроводных вводах зданий детских садов и школ, расположенных внутри района, застроенного многоэтажными зданиями, а также в других подобных случаях.

Циркуляционные насосы систем горячего водоснабжения должны обеспечивать расход воды QГВС, м3/ч, минимально необходимый для предотвращения ее чрезмерного (более чем на 10 °C) охлаждения при отсутствии водоразбора.

где Δt — предельно допустимая разность температур, °C, в горячем и циркуляционном трубопроводах, принимаемая 10 °C;
с — удельная теплоемкость воды, равная 4,187 кДж/(кг . °C);
— коэффициент, учитывающий несбалансированность циркуляционной3,6 системы горячего водоснабжения. Значения рекомендуется принимать равным 1 при одном циркуляционном стояке в системе, а также при нескольких циркуляционных стояках, если на каждом из них установлен настроенный надлежащим образом балансировочный вентиль. При отсутствии балансировочных вентилей 1,2 ≤ t ≤ 1,5. Для разветвленных систем горячего водоснабжения рекомендуется принимать более высокие значения 3,6;
WГВС — тепловой поток, кВт, от нагретых трубопроводов системы горячего водоснабжения в помещения, вычисляемый по формуле:

где α— коэффициент теплоотдачи, Вт/(м2 . °C), от поверхности нагретой трубы к воздуху помещения, принимаемый 11 Вт/(м2 . °C);
tП — температура, °C, помещений, в которых прокладываются трубы горячего водоснабжения;
∑Di . Li — сумма произведений диаметров, м, неизолированных трубопроводов (включая трубопроводы полотенцесушителей, присоединенных к стоякам горячего водоснабжения) на их длину, м;
∑Dj . Lj — сумма произведений диаметров, м, изолированных трубопроводов на их длину, м;
ηИЗ — эффективность тепловой изоляции, величина которой не должна быть меньше 0,8.

Давление Н, кПа, циркуляционного насоса системы горячего водоснабжения принимают равным величине гидравлического сопротивления контура циркуляции, включающего в себя наиболее удаленный от насоса циркуляционный стояк, при прохождении через сборный участок контура расхода QГВС, вычисленного по формуле 5.

Циркуляционными насосами горячего водоснабжения целесообразно управлять, отключая их во время пикового водоразбора. Командой для такого отключения может быть электрический сигнал от водосчетчика или от датчиков перепада давления, установленных, например, до и после водоподогревателя. В системах горячего водоснабжения пристроенных помещений общественного назначения циркуляционный насос нужно отключать по команде таймера на ночь и на выходные дни вместе с отключением водоподогревателя горячего водоснабжения от тепловой сети.

При прокладке трубопроводов горячего водоснабжения в эффективной тепловой изоляции расходы тепловой и электрической энергии на циркуляцию будут минимальными, в особенности при использовании электрических полотенцесушителей вместо водяных, которые обычно присоединяют к системе горячего водоснабжения.

При применении в качестве водонагревателей интенсифицированных кожухотрубных теплообменников ТТАИ можно вообще отказаться от использования циркуляционных насосов в системах горячего водоснабжения (раздел 3.4).
 

3. Рациональные тепловые пункты

3.1. Основы рационального подхода к проектированию ИТП

Практика проектирования и строительства теплопунктов строящихся жилых домов в течение последнего времени демонстрирует тенденции неоправданного их усложнения, следствием которого является не только удорожание строительства, но и неэффективность эксплуатации. Перенасыщенность ИТП циркуляционными насосами приводит к излишнему потреблению электроэнергии и к понижению уровня надежности системы, отключающейся при перерывах в электроснабжении. Возможности многофункциональной автоматики, применяющейся в теплопунктах, превышают фактическую потребность, а обслуживающий персонал не всегда способен выделить необходимые для реального энергосбереженияфункции многочисленных регуляторов, в результате чего они во многих случаях вообще не работают.

Сущность рационального подхода к проектированию ИТП состоит в том, что современный жилой дом безусловно стоит того, чтобы его тепловой пункт проектировался индивидуально с учетом высоты здания и площади квартир, степени комфортности и особых требований инвесторов, давлений в трубопроводах теплоснабжения и водоснабжения, площади и конфигурации помещения теплового пункта. Так называемые модульные теплопункты, собираемые из узлов заводского изготовления, обычно включающие в себя максимально возможный набор изделий с претензией на универсальность их использования, упрощают процесс проектирования и могут (далеко не всегда) способствовать сокращению трудозатрат на месте монтажа.

Эти достоинства модульных теплопунктов несопоставимы с ущербом, который выражается в излишних затратах денежных средств (рис. 11) и полезной площади в процессе строительства и, в особенности, в затратах излишней энергии в процессе эксплуатации. Тепловой пункт жилого дома должен быть конструктивно простым, легко управляемым и энергетически эффективным. Те, кто стремится запроектировать такой теплопункт, могут воспользоваться проверенными практикой рекомендациями.

 
1   2   3   4   5

Похожие:

Пособие по проектированию Гершкович В. Ф iconУчебное пособие к курсовому и дипломному проектированию
Организация пассажирских перевозок: Учебное пособие к курсовому и дипломному проектированию. – Ростов н/Д: Рост гос ун-т путей сообщения....

Пособие по проектированию Гершкович В. Ф iconУчебно-методическое пособие выполнено в рамках внутривузовского гранта...
Учебно-методическое пособие предназначено для руководителей структурных подразделений университета и профессорско-преподавательского...

Пособие по проектированию Гершкович В. Ф iconРуководство по проектированию печатных плат и электронных узлов
Требования к проектированию пп, предназначенных для автоматизированного smd монтажа

Пособие по проектированию Гершкович В. Ф iconВыпускная квалификационная работа
Учебно-методическое и практическое пособие по дипломному проектированию по направлению «Информационная безопасность»

Пособие по проектированию Гершкович В. Ф iconМетодическое пособие по курсовому проектированию по дисциплине «И...
Методическое пособие предназначено для студентов специальности 071600 «Высоковольтные электроэнергетика и электротехника», изучающих...

Пособие по проектированию Гершкович В. Ф iconИнструкция по проектированию, эксплуатации и рекультивации полигонов...
Инструкция предназначена для работников жилищно-коммунального хозяйства, научных, учебных, проектных, природоохранных организаций...

Пособие по проектированию Гершкович В. Ф iconИнструкция по проектированию, эксплуатации и рекультивации полигонов...
Инструкция предназначена для работников жилищно-коммунального хозяйства, научных, учебных, проектных, природоохранных организаций...

Пособие по проектированию Гершкович В. Ф iconТехническое задание к извещению о закупке на выполнение работ по...
Субподрядчик: определяется в процессе аукциона на выполнение работ по проектированию и монтажу лвс

Пособие по проектированию Гершкович В. Ф iconИнструкция по проектированию, изготовлению и монтажу вертикальных...
Разработаны: Институтом по проектированию объектов нефти и газа зао «Ин­жи­ни­ринговая компания «КазГипроНефтеТранс», Самарским филиалом...

Пособие по проектированию Гершкович В. Ф iconИ. А. Гершкович Приказ от 25. 04. 2014 №180 од
Федерации №1 от 26. 01. 10 г., Приказа Гособразования СССР от 01. 10. 90 №639 «О введении в действие Положения о расследовании и...

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск