Содержание 1


НазваниеСодержание 1
страница13/13
ТипЛекция
filling-form.ru > Бланки > Лекция
1   ...   5   6   7   8   9   10   11   12   13

Лекция 12
Локальные и глобальные компьютерные сети, телекоммуникации


Компьютерные сети. При физическом соединении двух или более компьютеров образуется компьютерная сеть. В общем случае, для создания компьютерных сетей необходимо специальное аппаратное обеспечение – сетевое оборудование и специальное программное обеспечение – сетевые программные средства.

Назначение всех видов компьютерных сетей определяется двумя функциями:

  • обеспечение совместного использования аппаратных и программных ресурсов сети;

  • обеспечение совместного доступа к ресурсам данных.

Для передачи данных компьютеры используют самые разнообразные физические каналы, которые обычно называются средой передачи.

Если в сети имеется специальный компьютер, выделенный для совместного использования участниками сети, он называется файловым сервером.

Группы сотрудников, работающих над одним проектом в рамках локальной сети, называются рабочими группами. В рамках одной локальной сети могут работать несколько рабочих групп. У участников рабочих групп могут быть разные права для доступа к общим ресурсам сети. Совокупность приемов разделения и ограничения прав участников компьютерной сети называется политикой сети. Управление сетевыми политиками называется администрированием сети. Лицо, управляющее организацией работы участников локальной компьютерной сети, называется системным администратором.

Основные характеристики и классификация компьютерных сетей

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

  • Локальная сеть (LAN – Local Area Network) – сеть в пределах предприятия, учреждения, одной организации.

  • Региональная сеть (MAN – Metropolitan Area Network) – сеть в пределах города или области.

  • Глобальная сеть (WAN – Wide Area Network) – сеть на территории государства или группы государств.

По скорости передачи информации компьютерные сети делятся на:

  • низкоскоростные сети – до 10Мбит/с;

  • среднескоростные сети – до 100Мбит/с;

  • высокоскоростные сети – свыше 100Мбит/с.

  • По типу среды передачи сети разделяются на:

  • проводные (на коаксиальном кабеле, на витой паре, оптоволоконные);

  • беспроводные с передачей информации по радиоканалам или в инфракрасном диапазоне.

По способу организации взаимодействия компьютеров сети делят на одноранговые и с выделенным сервером (иерархические сети).

Одноранговая сеть. Все компьютеры равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Достоинство – простота установки и эксплуатации.

Недостаток – затруднено решение вопросов защиты информации.

Такой способ организации используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.

Иерархическая сеть. При установке заранее выделяются один или несколько серверов – компьютеров, управляющих обменом данных и распределением ресурсов сети. Сервер – это постоянное хранилище разделяемых ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией. Сам сервер также может быть клиентом сервера более высокого уровня иерархии. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, винчестерами большой емкости и высокоскоростной сетевой картой.

Достоинство – позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы и обеспечить более высокий уровень защиты данных.

Недостатки:

  • Необходимость дополнительной ОС для сервера.

  • Более высокая сложность установки и модернизации сети.

  • Необходимость выделения отдельного компьютера в качестве сервера.

По технологии использования сервера различают сети с архитектурой файл-сервер и архитектурой клиент-сервер.

Файл-сервер. На сервере хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.

Клиент-сервер. Хранение данных и их обработка производится на сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса.

Основные характеристики сетей

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени – секунду. Единица измерения – бит в секунду.

Часто используется единица измерения скорости — бод. Бод — число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Пропускная способность канала связи. Единица измерения пропускной способности канала связи – знак в секунду.

Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Единица измерения достоверности: количество ошибок на знак – ошибок/знак. Этот показатель должен лежать в пределах 10-6-10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Надежность каналов связи коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Единица измерения надежности – час. Как минимум, несколько тысяч часов.

Время реакции сети – время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах.

Объем информации, передаваемой по сети, называется трафиком.

Топология сетей

Физическая передающая среда ЛВС. Физическая среда обеспечивает перенос информации между абонентами вычислительной сети.

Физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Витая пара состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары — телефонный кабель.



Достоинство витой пары – дешевизна. Недостаток витой пары – плохая помехозащищенность и низкая скорость передачи информации – 0,25-1Мбит/с.

Коаксиальный кабель обладает более высокой механической прочностью, помехозащищённостью и обеспечивает скорость передачи информации до 10-50Мбит/с. Для промышленного использования выпускаются два вида коаксиальных кабелей: толстый (10мм) и тонкий (4мм). Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле.



Оптоволоконный кабель – идеальная передающая среда. Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Скорость передачи информации по оптоволоконному кабелю более 50Мбит/с. По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.



Основные топологии ЛВС

Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть.

Топология ЛВС – это усредненная геометрическая схема соединений узлов сети. В топологии сетей применяют несколько специализированных терминов:

  • Узел – любое устройство, непосредственно подключенное к передающей среде сети;

  • Ветвь сети – путь, соединяющий два смежных узла;

  • Оконечный узел – узел, расположенный в конце только одной ветви;

  • Промежуточный узел – узел, расположенный на концах более чем одной ветви;

  • Смежные узлы – узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.

Топологии вычислительных сетей могут быть самыми различными, но для ЛВС сетей типичными являются всего три: кольцевая, шинная, звездообразная.

Кольцевая топология предусматривает соединение узлов сети замкнутой кривой – кабелем передающей среды. Выход одного узла сети соединяется со входом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованные ему сообщения.



Кольцевая топология является идеальной для сетей, занимающих сравнительно небольшое пространство. В ней отсутствует центральный узел, что повышает надежность сети. В качестве передающей среды используются любые типы кабелей. Но последовательная дисциплина обслуживания узлов такой сети снижает ее быстродействие, а выход из строя одного из узлов нарушает целостность.

Шинная топология – одна из наиболее простых. Она связана с использованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.



Высокое быстродействие ЛВС. Сеть легко наращивать, и конфигурировать, а также адаптировать к различным системам. Сеть устойчива к возможным неисправностям отдельных узлов, но имеет малую протяженность и не позволяет использовать различные типы кабеля в пределах одной сети. На концах сети устанавливают специальные устройства – терминаторы.

Звездообразная топология базируется на концепции центрального узла, называемого концентратором, к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.



Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспособность ЛВС со звездообразной топологией целиком зависит от центрального узла.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие в некоторых случаях сочетания рассмотренных. Выбор той или иной топологии определяется областью применения сети, географическим расположением ее узлов и размерностью сети в целом. Например:

Ячеистая топология. Для нее характерна схема соединения узлов, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:



В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.

Смешанная топология. В таких сетях можно выделить отдельные подсети, имеющие типовую топологию – звезду, кольцо или общую шину, которые для крупных сетей связываются произвольно.



Архитектуры сетей

Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы – методы доступа. Метод доступа к передающей среде – метод, обеспечивающий выполнение совокупности правил, по которым узлы сети получают доступ к ресурсу.

Маркерный доступ. Компьютер-абонент получает от центрального компьютера сети маркер-сигнал на право ведения передачи в течение определенного времени, после чего маркер передается другому абоненту.

При конкурентном методе доступа абонент начинает передачу данных, если обнаруживает свободную линию.

Сеть Ethernet. Схема передачи данных конкурентная, элементы сети могут быть соединены по шинной или звездной топологии с использованием витых пар, коаксиальных и волоконно-оптических кабелей. Основное преимущество – быстродействие от 10 до 100Мб/сек.

Сеть Token Ring. Схема с маркерным доступом. Физически выполнена как звезда, но ведет себя как кольцевая. Данные передаются последовательно от станции к станции, но постоянно проходят через центральный узел. Используются витые пары и волоконно-оптические кабели. Скорость передачи 4 или 16Мб/сек.

Сеть ARCnet. Схема с маркерным доступом, может работать как с шинной, так и звездной топологией. Совместима с витой парой, коаксиальным и волоконно-оптическим кабелем. Скорость передачи 2.5Мб/сек.

Модель взаимосвязи открытых систем

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на так называемой модели OSI (модель взаимодействия открытых систем – Model of Open System Interconnections). Модель OSI была создана на основе технических предложений Международного института стандартов ISO (International Standards Organization).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней – до семи). Самый верхний уровень – прикладной, на этом уровне пользователь взаимодействует с вычислительной системой. Самый нижний уровень – физический, он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Для обеспечения необходимой совместимости на каждом из семи возможных уровней архитектуры компьютерной сети действуют специальные стандарты (правила), называемые протоколами. Они определяют характер аппаратного взаимодействия компонентов сети (аппаратные протоколы) и характер взаимодействия программ и данных (программные протоколы). Физически функции поддержки протоколов исполняют аппаратные устройства (интерфейсы) и программные средства (программы поддержки протоколов). Программы, выполняющие поддержку протоколов, также называют протоколами.

Уровни модели OSI



Уровень

Функции, выполняемые уровнем

7

Прикладной

С помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

6

Представительский

ОС компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.) и преобразует их из внутреннего формата компьютера в формат передачи

5

Сеансовый

Взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя.

4

Транспортный

Документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

3

Сетевой

Определяет маршрут движения данных в сети. Так, например, если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

2

Канальный (соединения)

Модулирует сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученными с сетевого уровня, обеспечивает управление потоком данных в виде кадров, обнаруживает ошибки передачи и реализует алгоритм восстановления информации.

1

Физический

Реальная передача данных. Здесь нет ни документов, ни пакетов, ни даже байтов — только биты, то есть, элементарные единицы представления данных.

Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов – это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.


Сетевое оборудование

1. Сетевые карты (адаптеры) – это контроллеры, подключаемые в слоты расширения материнской платы компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети.

2. Терминаторы – это резисторы номиналом 50Ом, которые производят затухание сигнала на концах сегмента сети.

3. Концентраторы (Hub) – это центральные устройства кабельной системы или сети физической топологии «звезда», которые при получении пакета на один из своих портов пересылает его на все остальные. Различают концентраторы активные и пассивные. Активные концентраторы усиливают полученные сигналы и передают их. Пассивные концентраторы пропускают через себя сигнал, не усиливая и не восстанавливая его.

4. Повторители (Repeater) – устройство сети, усиливает и заново формирует форму входящего аналогового сигнала сети на расстояние другого сегмента. Повторитель действует на электрическом уровне для соединения двух сегментов. Повторители не распознают сетевые адреса и поэтому не могут использоваться для уменьшения трафика.

5. Коммутаторы (Switch) – управляемые программным обеспечением центральные устройства кабельной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адреса его получателя и соответственно передается только ему.

6. Маршрутизаторы (Router) – стандартные устройства сети, работающие на сетевом уровне, и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую, а также фильтровать широковещательные сообщения.

7. Мосты (Bridge) – устройства сети, которое соединяют два отдельных сегмента сети, ограниченных своей физической длиной, и передают трафик между ними. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети, одновременно не нарушая ограничений на максимальную длину кабеля, количество подключенных устройств или количество повторителей на сетевой сегмент. Мост может соединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем.

8. Шлюзы (Gateway) – программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Они действует на сеансовом, представительском и прикладном уровнях модели OSI.

9. Мультиплексоры – это устройства центрального офиса, которое поддерживают несколько сотен цифровых абонентских линий. Мультиплексоры посылают и получают абонентские данные по телефонным линиям, концентрируя весь трафик в одном высокоскоростном канале для передачи в Internet или в сеть компании.

10. Межсетевые экраны (firewall, брандмауэры) – – это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения. Большинство из них построено на разграничении доступов, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. В других случаях таким уникальным элементом является микропроцессорные карточки, биометрические характеристики пользователя и т.п. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры.

Телекоммуникационные технологии

По мере эволюции вычислительных систем сформировались следующие разновидности архитектуры компьютерных сетей:

  • одноранговая архитектура;

  • классическая архитектура «клиент-сервер»;

  • архитектура «клиент-сервер» на основе Web-технологии.

При одноранговой архитектуре рис. 1 все ресурсы вычислительной системы, включая информацию, сконцентрированы в центральной ЭВМ, называемой еще мэйнфреймом (main frame — центральный блок ЭВМ). В качестве основных средств доступа к информационным ресурсам использовались однотипные алфавитно-цифровые терминалы, соединяемые с центральной ЭВМ кабелем. При этом не требовалось никаких специальных действий со стороны пользователя по настройке и конфигурированию программного обеспечения.



Рис. 1. Одноранговая архитектура компьютерных сетей.

Явные недостатки, свойственные одноранговой архитектуре и развитие инструментальных средств привели к появлению вычислительных систем с архитектурой «клиент-сервер». Особенность данного класса систем состоит в децентрализации архитектуры автономных вычислительных систем и их объединении в глобальные компьютерные сети. Создание данного класса систем связано с появлением персональных компьютеров, взявших на себя часть функций центральных ЭВМ. В результате появилась возможность создания глобальных и локальных вычислительных сетей, объединяющих персональные компьютеры (клиенты или рабочие станции), использующие ресурсы, и компьютеры (серверы), предоставляющие те или иные ресурсы для общего использования. На рис. 2 представлена типовая архитектура «клиент-сервер», однако различают несколько моделей, отличающихся распределением компонентов программного обеспечения между компьютерами сети.



Рис. 2. Типовая архитектура «клиент-сервер».

Любое программное приложение можно представить в виде структуры из трех компонентов:

  • компонент представления, реализующий интерфейс с пользователем;

  • прикладной компонент, обеспечивающий выполнение прикладных функций;

  • компонент доступа к информационным ресурсам, или менеджер ресурсов, выполняющий накопление информации и управление данными.

На основе распределения перечисленных компонентов между рабочей станцией и сервером сети выделяют следующие модели архитектуры «клиент-сервер»:

  • модель доступа к удаленным данным;

  • модель сервера управления данными;

  • модель комплексного сервера;

  • трехзвенная архитектура «клиент-сервер».

Модель доступа к удаленным данным рис. 3, при которой на сервере расположены только данные, имеет следующие особенности:



Рис. 3. Модель доступа к удаленным данным.

  • невысокая производительность, так как вся информация обрабатывается на рабочих станциях;

  • снижение общей скорости обмена при передаче больших объемов информации для обработки с сервера на рабочие станции.

При использовании модели сервера управления данными рис. 4 кроме самой информации на сервере располагается менеджер информационных ресурсов (например, система управления базами данных). Компонент представления и прикладной компонент совмещены и выполняются на компьютере-клиенте, который поддерживает как функции ввода и отображения данных, так и чисто прикладные функции. Доступ к информационным ресурсам обеспечивается либо операторами специального языка (например, SQL в случае использования базы данных), либо вызовами функций специализированных программных библиотек. Запросы к информационным ресурсам направляются по сети менеджеру ресурсов (например, серверу базы данных), который обрабатывает запросы и возвращает клиенту блоки данных. Наиболее существенные особенности данной модели:



Рис. 4. Модель сервера управления данными.

  • уменьшение объемов информации, передаваемых по сети, так как выборка необходимых информационных элементов осуществляется на сервере, а не на рабочих станциях;

  • унификация и широкий выбор средств создания приложений;

  • отсутствие четкого разграничения между компонентом представления и прикладным компонентом, что затрудняет совершенствование вычислительной системы.

Модель сервера управления данными целесообразно использовать в случае обработки умеренных, не увеличивающихся со временем объемов информации. При этом сложность прикладного компонента должна быть невысокой.



Рис. 5. Модель комплексного сервера.

Модель комплексного сервера рис. 5 строится в предположении, что процесс, выполняемый на компьютере-клиенте, ограничивается функциями представления, а собственно прикладные функции и функции доступа к данным выполняются сервером.

Преимущества модели комплексного сервера:

  • высокая производительность;

  • централизованное администрирование;

  • экономия ресурсов сети.

  • Модель комплексного сервера является оптимальной для крупных сетей, ориентированных на обработку больших и увеличивающихся со временем объемов информации.

Архитектура «клиент-сервер», при которой прикладной компонент расположен на рабочей станции вместе с компонентом представления (модели доступа к удаленным данным и сервера управления данными) или на сервере вместе с менеджером ресурсов и данными (модель комплексного сервера), называют двухзвенной архитектурой.

При существенном усложнении и увеличении ресурсоемкости прикладного компонента для него может быть выделен отдельный сервер, называемый сервером приложений. В этом случае говорят о трехзвенной архитектуре «клиент-сервер» рис. 6. Первое звено — компьютер-клиент, второе — сервер приложений, третье — сервер управления данными. В рамках сервера приложений могут быть реализованы несколько прикладных функций, каждая из которых оформляется как отдельная служба, предоставляющая некоторые услуги всем программам. Серверов приложения может быть несколько, каждый из них ориентирован на предоставление некоторого набора услуг.



Рис. 6. Трехзвенная архитектура «клиент-сервер».

Наиболее ярко современные тенденции телекоммуникационных технологий проявились в Интернете. Архитектура «клиент-сервер», основанная на Web-технологии представлена на рис. 7.



Рис. 7. Архитектура «клиент-сервер», основанная на Web-технологии.

В соответствии с Web-технологией на сервере размещаются так называемые Web-документы, которые визуализируются и интерпретируются программой навигации (Web-навигатор, Web-браузер), функционирующей на рабочей станции. Логически Web-документ представляет собой гипермедийный документ, объединяющий ссылками различные Web-страницы. В отличие от бумажной Web-страница может быть связана с компьютерными программами и содержать ссылки на другие объекты. В Web-технологии существует система гиперссылок, включающая ссылки на следующие объекты.

Передачу с сервера на рабочую станцию документов и других объектов по запросам, поступающим от навигатора, обеспечивает функционирующая на сервере программа, называемая Web-сервером. Когда Web-навигатору необходимо получить документы или другие объекты от Web-сервера, он отправляет серверу соответствующий запрос. При достаточных правах доступа между сервером и навигатором устанавливается логическое соединение. Далее сервер обрабатывает запрос, передает Web-навигатору результаты обработки и разрывает установленное соединение. Таким образом, Web-сервер выступает в качестве информационного концентратора, который доставляет информацию из разных источников, а потом в однородном виде предоставляет ее пользователю.

Интернет — бурно разросшаяся совокупность компьютерных сетей, опутывающих земной шар, связывающих правительственные, военные, образовательные и коммерческие институты, а также отдельных граждан.

Как и многие другие великие идеи, «сеть сетей» возникла из проекта, который предназначался совершенно для других целей: из сети ARPAnet, разработанной и созданной в 1969г по заказу Агентства передовых исследовательских проектов (ARPA — Advanced Research Project Agency) Министерства обороны США. ARPAnet была сетью, объединяющей учебные заведения, военных и военных подрядчиков; она была создана для помощи исследователям в обмене информацией, а также (что было одной из главных целей) для изучения проблемы поддерживания связи в случае ядерного нападения.

В модели ARPAnet между компьютером-источником и компьютером-адресатом всегда существует связь. Сама сеть считается ненадежной; любой ее отрезок может в любой момент исчезнуть (после бомбежки или в результате неисправности кабеля). Сеть была построена так, чтобы потребность в информации от компьютеров-клиентов была минимальной. Для пересылки сообщения по сети компьютер должен был просто помещать данные в конверт, называемый «пакетом межсетевого протокола» (IP, Internet Protocol), правильно «адресовать» такие пакеты. Взаимодействующие между собой компьютеры (а не только сама сеть) также несли ответственность за обеспечение передачи данных. Основополагающий принцип заключался в том, что каждый компьютер в сети мог общаться в качестве узла с любым другим компьютером с широким выбором компьютерных услуг, ресурсов, информации. Комплекс сетевых соглашений и общедоступных инструментов «сети сетей» разработан с целью создания одной большой сети, в которой компьютеры, соединенные воедино, взаимодействуют, имея множество различных программных и аппаратных платформ.

В настоящее время направление развития Интернета в основном определяет «Общество Internet», или ISOC (Internet Society). ISOC — это организация на общественных началах, целью которой является содействие глобальному информационному обмену через Интернет. Она назначает совет старейшин IAB (Internet Architecture Board), который отвечает за техническое руководство и ориентацию Интернета (в основном это стандартизация и адресация в Интернете). Пользователи Интернета выражают свои мнения на заседаниях инженерной комиссии IETF (Internet Engineering Task Force). IETF — еще один общественный орган, он собирается регулярно для обсуждения текущих технических и организационных проблем Интернета.

Финансовая основа Интернета заключается в том, что каждый платит за свою часть. Представители отдельных сетей собираются и решают, как соединяться и как финансировать эти взаимные соединения. Учебное заведение или коммерческое объединение платит за подключение к региональной сети, которая, в свою очередь, платит за доступ к Интернету поставщику на уровне государства. Таким образом, каждое подключение к Интернету кем-то оплачивается.

Вопросы

  1. Назвать функции всех видов компьютерных сетей.

  2. Перечислить характеристики и классификацию компьютерных сетей.

  3. Типы физической передающей среды.

  4. Перечислить топологии ЛВС.

  5. Перечислить типы сетевого оборудования.

  6. Перечислить архитектуру и модели телекоммуникационных технологий.

1   ...   5   6   7   8   9   10   11   12   13

Похожие:

Содержание 1 iconСодержание содержание 1
Пояснительные записки, тематическое планирование и тексты учебных пособий Летней физико-математической школы. 2002 и 2003 гг

Содержание 1 icon5410611008 нижневартовск 2013 содержание
Общие требования к первой (предквалификационной) и второй частям заявок (содержание, оформление, подача, изменение, отзыв) 15

Содержание 1 icon5182012014 нижневартовск 2013 содержание
Общие требования к первой (предквалификационной) и второй частям заявок (содержание, оформление, подача, изменение, отзыв) 15

Содержание 1 iconПамятка для родителей, имеющих право на муниципальные льготы за содержание...
В соответствии с решением Совета депутатов г. Мурманска от 26. 12. 2006 года №30-357 «Об организации дошкольного образования и родительской...

Содержание 1 iconПамятка для родителей, имеющих право на муниципальные льготы за содержание...
В соответствии с решением Совета депутатов г. Мурманска от 26. 12. 2006 года №30-357 «Об организации дошкольного образования и родительской...

Содержание 1 iconПравила оформления заявки на грант содержание заявки
Научное содержание нир, оформленное по образцу научной публикации (объемом до 15 машинописных страниц, через 1,5 интервала)

Содержание 1 iconКурсовая работа тема: «Содержание договора и классификация его условий»
Неправильное составление договора или неполное содержание влечёт за собой проблемы различного характера

Содержание 1 iconФормата Передачи Данных TransUnion (tutdf) январь 2016 г. Версия 03r Содержание Содержание 2
Разъяснения по выгрузке информации о прекращении банковской гарантии в иных, отличных от окончания срока гарантии случаях. 145

Содержание 1 icon«Актуальные проблемы международного морского права»
Характеристики, структура и содержание Раздел Характеристики, структура и содержание учебной дисциплины

Содержание 1 iconКонспект лекций Тема Сущность, содержание и цели маркетинговой деятельности
Суть и содержание понятия «маркетинг». Цели, задачи, объект и предмет маркетинга. Эволюция содержания маркетинга

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на filling-form.ru




При копировании материала укажите ссылку © 2019
контакты
filling-form.ru

Поиск